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Survey of Army/NASA Rotorcraft Aeroelastic Stability Research

PREFACE

This paper was originally published under the title "Rotorcraft AeroelastLc
Stability - Army/NASA Research i967-1987" in NASA Confe:ence Publication 2495,
NASA/Arry Rotorcraft Technoloey, Volume I - Aerodynamics, and Dynamics and
Aeroelastlcity, 1988, Proceedings of a conference sponsored by the Department of the
Army and the National Aeronautics and Space Administration held at Ames Research
Center, Moffett Field, California, March 17-19, 1987. This version of the paper
contains several smIll changes from the original including the addition of a table

of contents, adding Reference 311, updating Reference 277, correcting Figures 3, 6,
41, 47, 50, 69, and correcting several typographical errors.
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SUMMARY

Theoretical and experimental developments in the aeroelastic and aeromechanical
stability of helicopters and tilt-rotor aircraft are addresLed. Included are the

underlying nonlinear structural mechanics of slender rotating beams, necessary for
accurate modeling of elastic cantilever rotor blades, and the development of dynamic
inflow, an urnsteady aerodynamic theory for low-frequency aeroelastic. stability
applications. Analytical treatment of isolated rotor stability in hover and forward
flight, coupled rotor-fuselage stability in hover and forward flight, and analysis
of tilt-rotor dynamic stability are considered. Results of parametri. investiga-
tions of system behavior are presented, and correlations between theoretical results

Paper presented at the NASA/Army Rotorcraft Technology Conference, NASA Ames
Research Center, March 17-19, 1987.
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* and experiment ,l data from small- and large-scale wlndy unnel and flight testing are
discussed. -P ~ (~t A. i

1. INTRODUCTION ... ..

Aeroelastic stability, like other rotorceaft technologies, is a broad and

complex subject. Extensive research has been conducted during the last 20 years
prompted bj the emergence of new technical challenges, as well as the establishment
of Army research organizations and the NASA-Army agreement for cooperative
research. Therefore, it is appropriate to survey the accomplishments during this
period. The scope, depth, and technical sophistication of the work to be discussed
have greatly increased. We now have An established and sound foundation and an
active research program. The purpose of this survey is to present a comorehensive
overview of Army-NASA research in rotov.raft aeroelastic stability accomplished over
the past 20 years, to assess and summarize the major contributins of government
research, and to identity needa and opportunities for future rcsearch and
development.

It is of interest to define the state of the art in rotorcraft aeroelastic
stability before 1970 as a background for this survey. Such a description should
serve to highlight how tar technology In this area has progressed. An outline of
the key technology areas for this description is given in table 1. Before 1970,
several research compound helicopters had extended rotorcraft flight-test experiencee to high-speed, high-advance ratio conditions. Examples of blade-stability problems
were encountered at high advance ratios. However, aT emphasis on high-speed rotor-
craft shifted away from compound helicopters and toward the tilt rotor, these
problems were not vigorously pursued. For conventional articulated- or teetering-
rotor helicopters operating at moderate flight speeds, aeroelastic stability was not
a significant concern. Although experience with the XV-3 tilt rotor had exposed
significant potential for aeroelastic stability problems, only limited research was
devoted to these probler-s.

The rotorcraft situation changed rather substantially as 1970 approached.

Interest in the hingeless rotor intensified during the late 1960's, but vehicle

development programs, including the AH-56A, began to expose the aeroelastic complex-
ities of such systems. The hingeless-rotor YUH-61A UTTAS prototype did exhibit

acceptable aeromechanical st?bility characteristics but was not slected for poduc-

tion. Even more advanced but structurally cor, piex configurations such as the bear-
ingless rotor were being explored. With the advent of the XV-15 program, the uncer-
tairties about tilt-rotor aeroelastic stability took on much more urgency.

In terms of rotor-blade stability, the pre-1970 era dealt pr;'arily with

bendirig-torsion, flutter, including wake-excited flutter. In thM 'Ust-1970 era,
these phenomena, together with the unique properties of hingeiess, and bearingless.-
rotor configural;ions, opened up a nvt! class of problems in aeroelastic instabil-
ity. These problems were associated with the poorly understood sLructural dynamics
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of cantilevered rotnr blades. With the availability of Fluquet theory, research in
the post-1970 period also began to deal with the long standing problem of forward-
flight ae,'oelastic stability.

For rotating-beam structural dynamics, the metal bladed-articulated rotors of

the pre-1970 period could be quite adequately handled with the equations of linear
beam theory and isotropic material properties. With the advent of hingeless and
bearingless rotors and composite materials, rotor-blade structural dynamics became a

complex nonlinear problem.

Unsteady aerodynamics theory for rotor-blade flutter in the pre-1970 period was

relatively standard, based on two-dimensional Theodorsen and Loewy theories. In the
post-1970 period, efforts were made to extend aerocllmamic theory to include three-
dimensional effects, dynamic inflow for simplified low-frequency aercelastic stabil-

ity, transonic tip aerodyn.mics, and dynam!.c stall effects.

In coupled rotor-body dynwmics, the pre-1970 era dealt mainly with classical

ground resonance of articulated rotors. The post-1970 period of hingeless rotors
brought with it the conplexity of aeromechanical instability, both on the ground and
in flight, with greatly increased complexity owing to the importance of
aerodynamics. In sum, the post-1970 era presented a very significant expansion of

technical issues facing the aeroelastician.

The objectives of research and developmeat on rotorcraft aeroelastic stability
are to ultimately meet the needs of the rotorcraft user. For the user, either

military or civilian, this means improving rotorcraft capability-for example,
performance, speed, maneuverability, payload-range, and ieliability-as well as
reducing acquisition, operating, and maintenance costs. With respect to aeroelastic
stability, this translates into reducing development cost and risk for improved
rotorcraft and enabling the designer to exploit new technology with minimal risk of
unforeseen aeroelastic instabilities. Without a firm technology base for aeroelas-
tic stability, the designer may be forced to adopt a more conservative design of
lower performance, or excessive testing nmay be required during development, thereby
adversely affecting cost and schedule. Even more serious, an unexpected instability

encountered during flight testing could seriously disrupt the schedule, cause major
cost overruns, or even jeopardize the program.

The success of research and development to meet the objectives outlined above
depends in part on the effectiveness of the approach employed. The success of the
Army-NASA efforts in .this field can be attributed in part to an approach that
includes (1) developing a thorough understanding jf the structural dynamics, aerody-
namics, and aercelastic stability characteristics of a wide variety of rotorcraft
components and syster-3; (2) developing and validating improved theoretical analysis
methods to predict stability; and (31 develcping design approaches and concepts that

eliminate or minimize the potential for aeroelastic instability.
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Understanding dynamic phenomena can be achieved through parametric analytical
studies or exploratory experimcntal Investigations. Since understanding a dynamic
system is often synonymous with being able to represent it mathematically, the
derivation of analytical models, comparing them against measured data, and carefully
studying and reconciling the results is a valuable part'of the process. For complex
physical systems, breaking the system down into a series of simpler problems is
often essential to get to the core of the problem. Ultimately a thorougn
understanding of aeroelastic stability phenomena is essential to avoid problems in
new designs and to mimimize design oomprom1ses necessary to avoid instability.

Development of theoretical prediction methods is a key part of aeroelastic
stability research. These methods permit the researcher to apply general knowiedge
in a precise way and ultimately equip the designer with concrete design tools.
Developing analysis methods involves basic research in the subdisiplines of aero-
elastic stability: matecials, solid mechanics, numerical analysis, and further
subspecialties. Validation of prediction methods is also essential. Developing
analyses and computer programs in a rigorous way is a very exacting procesrj, but
success can never be determined nor is a program of much value unless it can be
adequately validated. Done property, validation can be as demanding as development
of the theoretical analysis.

To be fully effective, experimental tests must be carefully planned to take
into account the specific objectives of' the validation. The experiment shculd be
designed to eliminate phenomena not germane to the correlation; moreover, the physi-
cal properties of the model must be accurately determined. Careful planning will
insure that proper interpretation of the correlation between theoretical and expori-
mental results can be made.

Finally, satisfying research objectives also involves identifying means to
*: forestall potential aeroelastic instability, whether through proper design prac-

tices, alternative design approaches to avoid problems, or generating concepts that
may eliminate such instabilities.

This survey is intended to cover aeroelastic stability research in a broad
sense, from the development of analysis methods to their effect on the development

. of flight vehicles. The material is organized in the following manner. Analysis
methods are treated first in section 2, focusing on the development of equations for
the prediction of rotorcraft aeroelastic stability. included is a detailed discus-
sion of underlying theory of kine.atics and solid mechanics for rotating elastic
beams, unsteady aerodynamics pertinent to rotorcraft aeroelastic stability (includ-
ing dynamic inflow), and a limited treatment of solution methods used in aeroelastic
stability analysis. The analysis methods section includes results of experimental

* investigations to validate basic theories for beam structural dynamics, unsteady
Saerodynamics, and solution methods. Experimental investigations or correlations of

aeroelastic tability are not included.

In section 3, information about the aeroelastic stabili.y characteristLcs and

behavior of rotorcraft is surveyed. hiis includes results of patametric analytical
investigations, experimental testing, and correlations to validate prediction
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wmthods. The material is organized in order of increasing complexity of the physi-
cal system, beginning with stability of a single flapping blade up to fully coupled
rotor-body dynamic systems. Section 4 surveys the experience gained in the, design
or development of specific rotorcraft systems from the point of view of ho' aero-
elastic stability technology affected the development or yielded insights during
design and testing of these systems. The organization of sections 2-4 neceszarily
leads to some overlap or duplication, for some research efforts naturally span two
or even more of these sections. Finally, the results of the work st!vveyed are
summarized, and the' contributions of Army-NASA research in this field are
assessed. Recommendations for future research are also provided.

* A few comments are in order regarding this survey. It was intended that Army-
NASA research contributions be emphasized in the material discussed herein. In
order to provide perspective and technical continuity, selected non-government
research and development efforts have been included where deemed appropriate. Wtile.
it is hoped that all relevant government contributions have been accounted for, this
survey is not complete for the fif.ld of aeroelastic stability as a whole. Further-
more, since the volume of work in the field is conmiderable, the treatment in the
survey is necessarily limited in depth and the reader should refer to the references
for more detail.

Mention is also in oroer regarding the distinctions between government and
non-government research. For the purposes of this paper Army-NASA contributions

include research and developmer; conducted by the four directorates of the U.S. Army
Aviation Research and Technology Activity (the Aeroflightdynamics Directorate
(AFDD), the Propulsion Directorate, the Aerostruatures Directorate, and the Aviation
Applied Technology Directorate (AATD)); the NASA Ames, Langley and Lewis Research
Centers; and academic or industry research supported by these government organiza-
tions. In the case of the Aeroflightdynamics Directorate this includes a number of
investigations sponsored jointly with the Army Research Office. The material

included herein but not derived from govern~ment or government sponsored efforts is
denoted by an asterisk entry in the reference list.

2. ANALYSIS METHODS

This section deals with the development of analysis me.thods for calculating the

aeroelastic and aeromechanical stability characteristics of rotorcraft including
formulation of equations of motion to model aeroelastic stability behavior. This
involves research in fundamental solid mechiinics, structural dynamics, materials
properties, rigid-body dynamics, and unsteady aerodynamics. This section also deals
with the development of mathematical methods to solve the aeroelastic stability
equations.
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STRUCTURAL DYNAMICS

Rotorcraft structural dynamics encompasses the mechanics of both rigid and
flexible bodies generally used to model the structural, inertial, and mechanical
characteristics of a rotcrcraft or its components. The equations are useful fo-'
various rotorcraft applications, but here we focus on their use in aeroelastic
stability analysis. This section will address the evolutionary development of
rotorcraft equations, primarily the equations of motion for rotating elastic beams
used in modeling the rotor blades and equations for coupled rotor-body systems
including both helicopters and tilt-rotor aircraft.

It Icis a given among rotorcraft researchers that because of the complexity of
the flow fields, an adequate description of rotary wing aerodynamics is well beyond
the current state of the art. Because the mechanics of rotating structures is
considerably less difficult than the aerodynamic problem, it is sometimes assumed
that rotorcraft structural dynamics is an exact science. However this is not the
case and the material presented below will describe the issues that resedrchers are
dealing with.

Rigid-Blade Equations

Early rotor-blade and rotorcraft analyses usually treated both hinged and
cantilever elastic blades as hinged, rigid blades for the purposes of aeroelastic or
aeromechanical stability. In the case of articulated rotor blades this is appro-
priate for many problems. For cantilever hingeless rotor blades, the hinged, rigid
blade represents a greater degree of approximation. Nevertheless, when the blade
bending flexibility is simulated with a rotational spring placed at the hinge, the
resulting equations may be adequate for zany applications. The equations are easier
to derive, and the solutions can be computed much more economically. The approx-

imate hinged-rigid-blade model has been widely used and served as a very effective
means to initiate more refined analyses of elastic cantilever blades. The rigid-
blade equations are also valuable when insight into dynamic behavior is sought.

In contrast to structural dynamics of elastic rotor blades, the equations of
motion describing the mechanics of hinged-rigid blade models are well defined, even
though the algeora can become very involved when many degrees of freedon: are
included. :he principal issue in deriving approximate hinged-rigid-blade equations
is the selection of the hinge geometry that will best sinulate the elastic olade.
The development of the hinged-rigid-blade models, their relative accuracy in repres-

enting elastic blades, and the results of aeroelastic stabilit, investigations based
on such approaches will be covered under Flap-Lag Stability in section 3.

Development of Elastic-Blade Equations

The fundamentai basis for rotor-blade equations of motion, and one of the key
topics in rotorcraft aeroelastic analysis, is the structural dynamics of rotating
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elastic beams. Over t e last 20 years, extensive Army and NASA efforts have been
devoted to the development of suitable equations to describe the elastic bending and
torsion of rotating cantilever beams. Much of this effort has been directed toward
the analysis of advanced hingeless and bearingless rotor blades. Although these
mechanically simple configurations offer considerable benefit for rotorcraft, they
also present a significant challenge for the structural dynamicist. The lack of
hinges results in moderately large bending and torsional deformations of cantilever
blades during rotorcraft operation. From a structural dynamics point of view these
moderately large deformations give rise to geometrically nonlinear structural and
inertial terms in beam equations, even when the material properties are linear and
the strains are small.

In contrast to hingeless rotor blades, articulated rotor blades could usually
be treated quite adequately with linear equations. Since the middle 1950's, the
standard equations for this class of problems were the classic Houbolt and Brooks
equations for combined flapwise bending, chordwise bending and torsion of twisted,
nonuniform rotor blades (ref. 1). Although these equations are linear, they contain
the geometrical stiffening, owing to centrifugal force, normally considered a non-
linear effect. These equations were the starting point for much of the subsequent
development of nonlinear equations for elastic rotor blades.

The following sections will deal with nonlinear equations for elastic beams
undergoing moderate deformations, the nonlinear kinematics of deformed beams, non-
linear torsion of pretwisted beams under axial tension, advanced theories for beams
undergoing large rotation and small strains, bearingless rotor blades, finite-
element formulations, and treatment of composite materials in rotor-blade '?quations.

Moderate deformation blade equations- .s noted above, the accepted standard for
elastic-blade equations was the work of Houbolt and Brooks (ref. 1). One of the
first attempts at a complete derivation of equations suitable for aereolastic analy-
sis of both articulated and cantilever blades was-the work of Arcidlacono, who
developed nonlinear equations for combined flapwise bending, chordwise bending, and
torsion motions of an elastic blade (ref. 2). The final modal equations were lin-
earized for small motions and included a quasi-steady aerodynamic formulation as
well.

The Aeroflightdynamics Directorate initiated research on development of nonlin-
ear elastic-blade equations in order to treat aeroelastic stability of hingeless
rotor blades. Early AFDD research considered the restricted problem of coupled flap
and lead.-lag elastic bending of torsionally rigid cantilever rotor blade:. Ormiston
and Hodges developed elastic-blade flap-lag equations to extend analysis capbili-
ties beyond the rigid-blade equations (refs. 3,4). Their derivaticn was bazcd on
Hamilton's principle because of its suitability for complex problms, especially
when the nonconservative aerodynamic forces are included. it also helps in cor-
rectly formulating the internal forces based on strain energy. The resulting
flap-lag equations differed little from the Houbolt-Brooks equations except-for a
kinematical variable for axial displacement of the blade, based in nonlinear strain-
displacement relations. The axial variable was eliminated from the equations by
assuming the blades to be inextensible. This asbumption neglects axial elastic
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deformation of the blade and expresses anial displacement in terms of lateral uis-
placements; this is the well-known kinematical foreshortening of the bear; axia

caused by bending. Points on the beam axis move radially as the blade bends.
resulting in both steady-state and perturbation centrifugal forces and Coroiis
forces. These effects are needed to capture essential nonlinear eatures of hinge-

less rotor flap-lag stability. Galerkin's method was used to reduce the partial
differential equations to ordinary differential equations in terms of ela,tic nend-
ing modes.

Friedmann and Tong also developed equations for analysis of flapwise and chord-
wise bending of elastic cantilever rotor blades (ref. 5). Blade-pitch motion was
treated as rigid-body rotation about the blade-root pitch axis and was restrained by
a root spring that represented pitch-link flexibility. Aerodynamic .',d mass cente
chordwise offso'. front the pitch axis were included. These equations accounted fo.

axial foreshortening of the blade but did not include linear flap-lag structural
coupling or distributed eldstic torsion deformation 3long the lerg' of the blade.
Quasi-steady aerodynamic forces were included and these equations were used to study
aeroelastic stability.

One of the most important features of an elastic cantilever ocam is the nonlin-
ear coupling between torsion and comoined flapwise and chordwise bending. A scnema-

tic illustration of the nonlinear torsion produced by simultaneous flapwise and
chordwise bending is given in figure *. This coupling ;as a very powerful effect on
hingeless rotor blade aeroelastic stability, the precise effects being very sensL-
tive to the detailed structural and geometric properties of the blade. This probiem
has stimulated much research on beam theory and rotor-blade equations.

Hodges utilized Hamilton's principle to derive nonlinear equations for coupled
bending and torsion of an elastic rotor blade (ref. 6). 7he nonjinear kinematical
basis is an extended version of the formulation by Novozhilov (ref. 7). Hodges also
introduced the idea of an ordering scheme !o deal with the numerous nigner-order
terms that arise when geomctric nonlinear:ties associated with moderate -eformations
are included in the equati6n formuiatien. The purpose of :he ordering scneme -as :o

simplify the equations by discarding gnher-order terms in 3 reasonaolv zonsist nt
manner. There are minor inconsistencies .n the kinematical equat:ons of reference A
associated with finite rotation ana nonlinear beam <inemaz.cs :na: wi.! ce
addressed below. Hodges also developea a quasi-s~eady aeredynamic formulacicn anz
applied the equations to a modal analysis of aeroelastic sLaoili:v of .niform 5ant:-
lever rotor blades that clearlv .llustra:ea the significar: ;.fl-ence : :ne -cn -

ear bending-torsion coupling terms.

One of the early AFDD objectives was to derive a system of nonlinear eauavzrns

for cantilever rotor blades that would :ake the place of :he Huubolt -.no 3rocks
equations. In a significant work. dnich *as since zecome a s-andard in e :ie,.
and a starting point for many sutsequent Lnvestigations, 4czges ana Do ue..er:vec
the dynamic eqpations of motion governing coupled bending ana :orsion :f ::s:ed
nonuniform rotor olades suoject to arbi:rariy aoplied loacs kref. 3). Hoges an
Dowell used essentially the same ordering schemae . :ha- zn" fodges ,ref. . oth
Hamilton's principle and a Newccn.an approacn were used .n :ne Jer. :acion -: tne



structural and inertial terms in the equations of motion. As discussed in refer-O ence 8, the Newtonian approach does, not necessarily yield a syMetriC structural
operator and althort3. the equations from the two methods are not identical, one s3t
can be obtained from the othe- simply by taking linear combinutions of the irdivid-
ual equations. The ordering scheme was carefully appliei to insure self-adjoint
structural and inertial operators. Both Hamilton's principle and the Newtonian
method rely on a nonlinear stra:n-displacement relation that when used in conjunc-
tion with a linear constitutive law, permits the strain energy and force and moment
resultants to be expressed in terms of blade-deformation variables.

The kinematical formulation of the Hodges-Dowell equations is based essentially
on Green strain componnts, although Almansi strain components play an intermediate
role in the formulation. The strain components were derived from a blade-
displacement field that was in turn based on a deformed blade coordinate transforma-
tion developed by Peters (appendix, in ref. 8). This transformation, based on
reference 9, allowed the inconsistencies in the equations of reference 6 to be
rectified. In this formulation the torsional kinematical variable i defined as the
integral of the torsional component of the curvature vector, a definiticai that has
been used by only a few other investigatcrs. The final results are given in the
form of partial differential equations, accurate to second order, that include the
effects of precone and cross-section chordwise offtets. These equations have been
the basis for a number of refinements that will be discussed below, as well as for
numerous investigations of hingeless rotor blade aeroelastic stability. Dowell
applied these equations to derive modal equations for blades with radially varying
properties in reference 10.

* One of the principal contributions of the Hodges-Dowell elastic-blade equations
was the nonlinear structural operator that properly represented the nonlinear
bending-torsion coupling needed for cantilever blade aeroelasticity. To evaluate
the accuracy of the theory, Dowell and Traybar conducted a series of laboratory
experiments on static deformation and vibration of uniform elastic cantilever beams
with large deflections (refs. 11,12). The Princeton beam data have since come to be
regarded as a benchmark for evaluating nonlinear beam theories. !n the experimertal
setup shown in figure 2, a 20-in. aluminum cantilever beam with unequal bending
stiffnesses is loaded at the tip with a concentrated mass. As the load angle 9 of
the beam is varied, the weight of the tip mass generates combined flatwise and
edgewise loading that in turn produces a torsional deformation owing entirely to
geometrically nonlinear effects. A comparison of the experimental data with the
Hodges-Dowell theory presented in reference 13 and in figures 3 and 4 validates the
nonlinear theory for moderate deformations. However, for load conditions in which
the bending deformations exceeded the assumptions uf the second-order theory, the
correlation was poor. In figure 4, bending deformations as a function of the tip
tass show how the Hodges-Dowell theory breaks down when the bending deflections
become excessive; the flatwise deflection caused by a 5-lb load is 35% of the length
of the 20-in. beam.

Nonlinear structural behavir -a.s. . .a sr.n . '-- efdec an... frq -
cies. The ,undamental flatwise frequency of the beam when loaded in the edgewise

9
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direction, S = 00, is compared with both linear and nonlinear theory in figure 5.
The correlation with nonlinear theory is excellent in comparison with a linear
theory since the static edgewise bending does not exceed moderate deformaticns.
Closer examination of the correlation as the frequency approached zero prompted
further study of the theory in connection with lateral buckling of slender Leams.
Hodges and Peters (ref. 14) found inconsistencies in classic theories of lateral
buckling and developed an improved formula that matched the euperimental data shown
in figure 5. In a different comparison for bending frequencies shown in figure 6,
moderate deformation theory is again shown to be inaccurate when large deformations
are encountered.

Hodges and Ormiston modified the Hodges-Dowell equations to include variable
flap-lag structural coupling and quasi-steady aerodynamics, and applied the equa-
tions to investigate hovering rotor-e" • aeroelastic stability (ref. 15). The
Ho.ges-Dowell equations were further exte ,ded by Hodges to include additional con-
figuration parameters such as twist, droop, torque and hub offset, and a root pitch
bearing with pitch-link elastic restraint (ref. 16). Galerkin's method was used to
generate modal equations for radially uniform blades without chordwise offsets,
including quasi-steady aerodynamic terms for the hover flight condition. The equa-
tions were very long and complicated partly because of the choicc of variables and
coordinate systems and partly because of the explicit appearance of the numerous
configuration parameters. This complexity was one stimulus for later development of
a finite-element approach so that all the parameters could be put into the analysis
in generic form. The analysis was used by Hodges and Ormiston to study the stabil-
ity of hingeless rotors with pitch-link flexibility (,ef. 17).

The adequacy of the structural dynamics equations for rotating cantilever

blades was examined by performing in-vacuum vibration experiments on a model rotor

blade having uniform mass and stiffness properties (ref. 18). The equations derived
by Hodges in reference 16 were checked by comparison with the experimentally mea-
sured vibration frequencies, as shown in figure 7.

The elastic-blade equations developed by Friedmann and Tong (ref. 5) were
refined by Friedmann to treat moderately large deformations, and therefore, include
nonlinear bending-torsion coupling in the structural operator as in the Hudges-
Dowell equations (refs. 19,20). The resulting equations included distributed blade
torsion in addition to rigid-body blade root pitch motion, linear flap-lag
structural coupling, precone, and cross-sectic chordwise offsets. More refined
equations including blade droop and aerodynamics for forward flight conditions were
used foir forward flight stability investigations by Friedmann and Reyna-Alende
(ref. 21).

In a subsequent development, Rosen and Friedmann undertook an extensive
re-derivation of the nonlinear equations for moderate deformation of elastic rotor
blades based on the assumption of small strains and fini.te rotations
(refs. 22,23). Only the structural operator was presented in the form of explicit
partial differential equations; the inertial terms were left in general form. The
equations were aerived using both the Newtonian methoJ and the principle of virtue.
work and improved on the previously developed equations in references 20 and 21.

"0S



The blade model was cantilevered at the rotor hub, with precone, pretwtst. a. symmetrical cross section, and chordwise offsets of the elastic axis, mass center,
and tension axis. However, several aspects of the development were unusual, partic-
ulc'ly in regard to the absence of warp in the formulation and the absence of cer-
tain well known terms in the torsion equation, as will be discussed below.

The Rosen-Friedmann equations were extended for application to rotor-blade
aeroelastic stability analysis by including a more complete derivation of the iner-
tial terms by Shamie and Friedmann (ref. 24). They also included a derivation of
quasi-steady aerodynamic terms appropriate for the forward flight condition. The
equations were transformed into modal equations by using Galerkin's uthod and
linearized for u!e iAn studies of rotor aeroelastic stability in forward flight. The
same equatiens were also uzed by Friedmann and Kottapalli for further applications
studies (ref. 25).

Results obtained from an enhanced version of the Rosen-Friedmann equations Ivere
also compared with the Princeton beam data in reference 26 and typical results of
that comparison are included in figures 3 and 4. The accuracy of the theory is
confirmed by the data and "is an improvement over that of the Hodges-Dowell equa-
tions. As pointed out by Hodges in reference 27, the two sets of equations for this
problem are equivalent except that Rosen and Friedmann retainod several third-order
terms that become important for configurations in which the ratio of the edgewise to
flatwise stiffness is large compared to unity.

Another derivation of the nonlinear elastic-blade equations was carried out by
Kaza and Kvaternik who developed equations for elastic flap bending, lead-lag bend-
ing, and torsion in forward flight (ref. 28). Kvaternik et al. also developed
flap-lag equations for arbitrarily large precone (ref. 29). The Kaza and Kvaternik
equations in reference 28 are similar to the Hodges-Dowell equations (ref. 8',
except for the following differences. Kaza and Kvaternik proposed two sets of
equations, each with a distinct kinematical variable for torsional rotation. With
the appropriate changes of kinematical variable, these two sets of equations and
those of Hodges and Dowell can be shown to be essentially equivalent. Rather than
use an ordering scheme as did Hodges and Dowell, Kaza and Kvaternik simply
restricted the nonlinearities in the equations to second degree. Finally, Hodges
and Dowell used the axial displacement as a kinematical variable whereas Kaza and
Kvaternik used a kinematical variable defined as the integral of the axial strain
(analogous to the torsional kinematical variable of Hodges and Dowell). These
differences will be discussed below in connection with finite rotation.

Crespo da Silva derived hingeless-rotor-blade equations based on Hamilton's

principle and solved them by the Galerkin method (ref. 30). An ordering scheme was
used in which terms of one order higher in the ordering parameter are retained; :ri.s
the equations are valid to third order. The purpose of this work wa to evaluate
the influence of those higher-order terms in the equations. It is found that for
stiff-inplane configurations having low torsional rigidity the influence of higher-
order terms can be important. :1 typical example from Crespo da Silva et al.
(refs. 31,32), is shown in figure 8, where the dashed lines shnw blade lead-lag
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* damping and frequency from second-order theory (e.g., ref. 15) and the solid lines
give results with third-order terms retained.

Finite rotation- To adequately udel helicopter blades in general and hingeless
rotor blades in particular, the elastic deflections mu:Rt be treated as moderately
large and the resulting equations of motion will therefore be nonlinear. The previ-
ous section described the development of such equations. To derive these equations,
it is necessary to first specify the geometry of the beam both in its undeformed
state and in its deformed state at some particular instant in time. For typical
beam theories, this involves expressing the position of a generic point on the
elastic axis and the orientation of a coordinate frame attached at that point to
adequately specify the location of every point in the beam. It is common practice
in the helicopter rotor-blade literature to evaluate the transformation matrix
between the deformed and undeformed states using a Euler-like sequence of three
successive rotations. For linear mathematical models undergoing small rotations,
the order of rotation does not affect the final form of the transformation matrix.
However, in nonlinear analysis involving moderately large deformations, the final
form of the transformation matrix, and subsequently the derived equations of motion,
will depend on the rotation sequence. When rotations cannot be treated as small
linear deformations they are termed finite rotations. The subject of ncniine.or beam
kinematics involving finite rotation is complex and sometimes controversial (e.g.,
Kaza and Kvaternik, ref. 33, regarding the correctness of various derivations of
elastic-blade equations) and has attracted the attention of a number of researchers.

The kinematical basis of the Hodges-Dowell elastic blade equations (ref. 8) wasO derived from rigorous representation of nonlinear beam kinematics based in part on
Peters' derivation of the deformed-blade transfoemation matrix (ref. 9). A similar
set of kinematical relations was derived by 1vaternik and Kaza (ref. 34) and Kaza
and Kvaternik (ref. 28), and led to the differences between the Kaza-Kvaternik
equations and the Hodges-Dowell equations. These differences were addressed by
Hodges et al. as part of a g*neral treatment of nonlinear beam kinematics
(ref. 35). One purpose of that work was to show that the sequence of rotational
transformations used in defining the orientation of the cross section of a beam
during deformation is immaterial. The kinematics of large-deformatio'i geometry for
a Euler-Bernoulli beam was developed, including the transformation matrix relating
the local principal axes in the deformed state to space-fixed Cartesian axes, the
components of angular velocity and virtual rotation vectors, the torsion, and the
components of bending curvature. Nonlinear expressions were developed to relate the
orientation of the deformed beam cross section, torsion, local components of bending
curvature, angular velocity, and virttual rotation to deformation variables. These
expressions were developed in an exact manner in terms of a quasi-coordinata in the
space domain for the torsion variable. The entire formulation was shown to be
independent of the sequence of the three rotations used to describe the orientation
of the deformed-beam cross section. For more common cases in the literature in
which one of the three rotation angles is used as the torsion variable, the result-
ing equations depend on the choice of the three angles. Differences in the equa-
tions, however, were demonstrated to be in form only sincc the t-rsion variables ,i
such cases represent different rotations.
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Following the gen~eral treatment of nonlinear beau kinemtics of reference 35,
additional work along the same line was carried out by Alkire (ref. 36). In this
work the relationships between the twist variables associated with different rota-
tion sequences, as well as corresponding forms of the transformation matrix, were
studied, and the earlier work was extended to examine the role of blade built-in
pretwist for sequences other than flap-lag-pitch and lag-flap-pitch. In addition to
reiterating many of the conclusions of reference 35, Alkire developed a procedure
for evaluating the transformation matrix that eliminated the Euler-like sequences
altogether. The resulting form of the transformation matrix was unaffected by
rotation sequence. This method, upon further analysis, turned out to be a variant
of the Rodrigues formulation as shown by [odges (ref. 37).

Another rather unusual approach was presented by Jonnalagadda and Pierce
(ref. 38), and discussed by Hodges et al. (ref. 39). This approach, instead of
using one of the orientation angles as the torsional variable, used the average of
the two angles used by Kaza and Kvaternik (ref. 28). In the special case of moder-
ate rotation, their method is equivalent to the Rodrigues- formulation.

A survey of standard methods of representing finite rotation of rigid body
kinematics in relation to nonlinear beam kinematics was presented by Hodges in
reference 37. Orientation angles, Euler parameters, and Rodrigues parameters were
reviewed and compared. These standard methods of representing finite rotations were
applied to general kinematical relations for a large rotation beam theory. The
resulting kinematical expressions were compared for both tt i standard methods and
some additional methods found in the literature, such as quasi-coordinates and

* linear combinations of projection angles. The method of Rodrigues parameters is
unique for both its simplicity and generality when applied to beam kinematics.
Especially for large rotations, as might be encountered in the flexbeam portion of a
bearingless rotor blade, the Rodrigues irmulation was shown to be superior to all
other methods.

Tension-torsion coupling- In the Ievelopment of elastic-blade equations, the
tension force and tension-torsion coupling have attracted considerable attention.
This research expanded to encompass problems of constitutive laws and beam exten-
sional vibrations.

Although the beam equations developed by Rosen and Friedmann (refs. 22,23) were
similar to those previously developed, they omitted two well-known terms in the
torsion equation that are present in work all the way back to that of Houbolt and
Brooks (ref. 1). Previouy analyses contain (1) a pretwist moment term owing to
combined pretwivt and tension and (2) a tension-torsion stiffness term that
increases effective torsional stiffness owing to tension. Furthermore, these terms
are preseac. in the older analyses even for the limiting case of a beam with circular

"cross section, although the pretwist moment seems inconsistent since pretwist of a
circular beam is arbitrary. Previous investigators had made use of a curvilinear
coordinate system, which arises because of pretwist; unfortunately, r constitutive
law appropriate for that type of coordinate system had not been used. The equations
of Rosen and Friedmnann were carefully derived based both on an orthogonal coordinate
system and, in reference 22, on the same curvilinear coordinate system used by
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. previous investigators, except with an appropriate constitutive law. They concluded
that the pretwist moment would not have been present, had previou investigators
used an appropriate constiutive law, and that the tension-torsion stiffness term
should be negligibly small for rotor blades. Although their derivation was carried
out correctly, they assumed warping to be unimportant.

Hodges showed that when the analysis is done correctly and includes warping,
both of these terms are present; but the form of the first term is different from
that found in older works (ref. 40). In the limiting case of a beam with circular
cross section, which does not warp, the pretwist moment vanishes, as expected. More
significantly, however, for thin cross sections (like those of rotor blades) and
with warping included, the pretwist moment reduces to a term very similar to that of
Houbolt and Brooks and previous work as well. This problem was discussed further by
Rosen (ref. 41) and Hodges (ref. 42). Later work by Rosen (ref. 43), based on an
analysis essentially identical to that of Hodges (ref. 40), included warp and exhib-
ited good agreement with experimental results for the pretwist moment of pretwisted
strips.

The above discussion addressed the pretwist moment term. Friedmann and Rosen
discarded the tension-torsion stiffness term, the one showing increased torsional
rigidity owing to tension,, based on an order-of-magnitude analysis. This term is

present in Hcdges's e~uations unaltered from the classic form. Petersen analyzed
beam tension-torsion coupling and obtained a different form for this term, one in
which the effective torsional stiffness increases because of tension for warping
beams but does not increase for nonwarping beams (such as beams of circular cross
section) (ref. 44). Why Petersen's analysis turned out this way was unknown at
first. In an attempt to reconcile the analyses of Hodges and Petersen it was found
that the main difference between their approaches was the constitutive law. Helges
had used the classic strain energy approach based on Green strain, whereas Pet%..sen
had used a strain energy based on Almansi strain. Hodges later showed that a iigor-
ous small-strain analysis would qualitatively confirm Petersen's conclusion regard-
ing the tension-torsion stiffness term (ref. 45).

The influence of the strain-energy function (or constitutive law) had been
encountered before. Hodges found disagreements in the technical community concern-
ing the extensional vibration of rotating beams (ref. 46). Depending on the strain-
energy definition used (whether based on Green, Hercky, or Almansi strain), one
could find significant differences in the trends of extensional frequency versus
angular speed. Thus, it was concluded that without experiments or knowledge of
second-order material constants, it would be impossible to determine the correct
trend. The reason is that the different strain definitions contain terms of higher
order in elongations. Use of Hooke's law implies linearity between some definition
of stress arid some definitio n of strain. The choice of stress and strain defini-
tions is essentially arbitrary. The different choices imply different relationships
between physical stress and strain, thus resulting in different predicted behav-

ior. For Green strain the predicted extensional frequency will increase with rotor
angular speed, whereas for the Hencky logarithmic strain, extensional frequency will
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. decrease with rotor angular speed. This is further discussed In Venkatesan anw
Nagaraj (refs. 47,48), Hodges (ref. 49), and Kvaternlk and Kaza (ref.. 34).

It was now clear that a similar situation existed for torsion in the presence

of axial stress. The main reason for the differences between the equations of

Petersen (ref. 44) and those of Hodges (ref. 40) is the form of the constitutive
equation. In joint experimental and theoretical work, Degener et al. (ref. 50) have

shown that the effective torsional stiffness of a circular-cross-section, nonwarp-

ing, rubber beam under large axial elongation actually decreases and is best pre-

dicted by the Hencky strain-energy function (fig. 9). A classical analysis based on
Green strain energy is completely inadequate, and even the well-known neo-Hookean
material strain energy function only performs fairly well. A strain-energy function
closely associated with Petersen's formuiation also performs well.

In other closely related work, Kaza and Kielb examined the effects of warping
and pretwist on torsional vibrations of rotating beams (ref. 51). They found, bancd
on an analysis similar to that of the older works (such as that of Houbolt and
Brooks) that warping, pretwist, and tension increased the torsional stiffness of.

beams.

Advanced beam theories- Most of the effort in the development of elastic-blade
equations, represented by the contributions of Hodges and Dowell (ref. 8), Kaza and
Kvaternik (ref. 28), and Rosen and Friedmann (ref. 23), used a geometric nonlinear
analysis based on the assumption that structural deformations were limited to moder-

* ate rotations. Although adequate for many applications in rotor-blade aeroelastic
stability, this assumption has limitations. For example, bearingless-rotor flex-
beamr, undergo combined bending and torsion deformations that produce large rota-
tions, exceeding the moderate rotation of conventional analyses. Furthermore, the
moderate rotation theories may be valid for a certain range of beam configuration
parameters and then break down for other configurations. One example is the case of
a thin beam for which the ratio of bending stiffnesses is small in some sense.
Ideally, the magnitude of parameters in the equations for general-purpose analyses
should not influence the structure of' the equations themselves. Such an ideal fs
evidently not present in the ordering schemes of references 8 and 23 or in any
arbitrary a priori restriction to second-degree nonlinearity, as in reference 28.
Furthermore Stephens et al. showed that inconsistencies are virtually unavoidable in

ordering schemes based on displacements and rotations when the magnitude of the
torsion rigidity is small compared with the bending stiffnesses (ref. 52). Another

shortcoming in the moderate rotation equations in references 8, 23. and 28 is that

the effects of pretwist are not treated rigorously.

To address these problems, Hodges- developed a more general system of nonlinear
bending-torsion equations for pretwisted beams undergoing small strains and large
rotations (ref. 53). Hodges abandoned the common assumption of moderate rota-
tions. To avoid some of the limitations of previous analyses, Hodges modeled the
kinematics of ; sl, nder beam without resorting to an ordering scheme for rotations
or to arbitrary restrictions on iegree of nonlinearity allowed in expressions
involving displacement. The transformations used Tait-Bryan orientation angles

although a parallel development based on Rodrigues parameters was :ncluded in an



appendix to reference 53. The kinematic relations that describe the orientation of
the cross section during deformation were simplified by systematically ignoring the

extensional strain compared with unity in those relationships. Open-cross-section
effects such as warping rigidity and dynamics were ignored, but other influences of
warp were retained. The beam cross section was not allowed to deform in its own
plane and the stress-strain relation was assumed to be isotropic. Various means of
implementation were discussed, including a finite-element formulation. This beam
formulation was used as the basis for the GRASP finite-element, coupled rotor-body
aeromechanical stability analysis that will be discussed below.

To evaluate the validity of this theory, particularly for the case of large

deformations, Hodges (refs. 53,311) compared results for static deformations with
the Princeton beam data from references 11 and 12. These comparisons are also

included together with the earlier theories in figure 3 and show excellent agree-
ment. Furthermore, the large-rotation theory also snows excellent agreement with
the data in figure 6 for beam-bending natural frequencies.

Although Hodges's large-rotation equations in reference 53 represented "c sig-
nificant advance, they also contained limitations that stimulated further develop-
ments. First, these equations are restricted to beams to which the Euler-Bernoulli
hypothesis applies. This restriction may be violated for composite rotor blades.
Second, the treatment of tension-torsion coupling is somewhat weak. As in Hodges
(ref. 40), the Green strain components were used and simplified based on heuristic

geometrical arguments to a form valid for small strains and large rotations. In
particular, the nonlinear term in the axial strain expression responsible for the
tension-torsion coupling is difficult to identify based on geometrical arguments
alone. Also, the derivations from Rosen and Friedmann (ref. 22) and Hodges
(refs. 40,53) are very complex as a result of the curvilinear coordinate system.
The derivation and simplification of the strain-displacement relations is so lengthy

and tedious that the details are not included in reference 53.

To remedy these limitations, Hodges initiated development of a new definition

of strain displacement relation for a beam based on the idea of engineer~nig

strain. The motivation was primarily that calculation of Green strain produces many

superfluous terms that need to be removed by some process for small elongations and

shears. The reason for this is that the Green strain principal values contain terms

of the order of elongations squared. This gives rise to terms in the final strain

expression which are of the order of "strain" squared in addition to the true

strain. The Jaumann-Biot-Cauchy "engineering" strain tensor has principal values

that are linear in elongation. Hndges (ref. 45) and Danielson and Hodges (ref. 54)

present this new strain definition, starting with the engineering-strain definition

and rigorously decomposing the finite rotation field. This work does not invoke the

Euler-Bernoulli hypothesis in the kinematics and adds initial curvature to the

description of the reference state of the beam. Most significantly, the algebra of

dealing with the curvilinear coordinate system is greatly simplii'ied with this

formulation in comparison with previous ones.

These developments provide the basis for new advanced beam Lheories for small

strains and finite rotations. The representation of finite rotation can be by any
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method one desires. For large rotations Rodrigues parameters make the most sense.
For moderate rotations a variant of the Rodrigues formulation, often called the
finite-rotation vector, is preferred. This is the approach recommended for analyti-
cal schemes in which a polynomial expression is desirable for the strain components,
such as a perturbation scheme.

A complete theory based on this kinematical formulation has yet to be devel-
oped. The initial curvature of the elastic axis and effects associated with open
cross sections should also be incorporated. In order to be a practical tool for
rotor-blade analysis, a modeling approach for anisotropic materials must somehow be
included. This i:.j:lem is not yet fully solved, but several investigators have

begun to work, as d1scussed below, in connection with composite blade modeling.

Bearingles,. rotor analysis- This section will discuss Army-NASA research to
develop analysis methods for bearingless-rotor systems, a specialized but important
subclass of elastic blades. The bearingless rotor offers benefits foi advanced
rotorcraft development and simplifies rotor hubs by eliminating blade-pitch-change

bearings, and thereby reducing weight, complexity, and maintenance, and increasing

reliability and productivity. Although the physical structure is simplified, the

bearingless rotor requires more sophisticated structural and aeroelastic analysis of
the rotor hub and blades. The bearingless-rotor design is based on replacing blade-
root hinges and bearings with a flexbeam sufficiently flexible in torsion to accom-

modate all blade-pitch-control motion provided by the pitch change bearing of artic-
, ulated and hingeless rotors.

The bearingless rotor blade configuration is one of the most challenging prob-

lems for the rotorcraft structural dynamicist. Although the hingeless rotor blade

is already complex, the bearingless rotor presents potentially more difficult prob-

lems because of the flexbeam and the blade-feathering mechanism. Basically, to

accommodate blade motion and feathering, the flexbeam undergoes complex combined
bending and torsion deformations that may be significantly larger than for a hinge-

less rotor blade. The elastic twist needed to accommodate blade feathering may be
of the order of 15*-20. At the same time, the flexbea, must carry the full cen-

trifugal tension load of the blade. The pitch-control mechanism introduces a secord

load path for blade-root shears and moments and makes the system structurally redun-
dant. Multiple flexbeams introduce additional structural complexities.

Combinations of flexbeam and pitch-control systems lead to a variety of

bearingless-rotor types; the principal ones are depicted in figure in. The most
direct is a simple torque tube pinned at the hub and either pinned or cantilevered

at the blade root. The cantilever pitch configuration is phyz,:ally simple but
structural interaction of the pitch arm, flexbeam, and elastic flexbeam generates

complex aeroelastic coupling. The structural interaction may be reduced by a torque
tube and snubber configuration. The snubber, located at the inboard end of a torque

tube fixed to the blade root and enclosing the flexbeam, constrains translz,ion of
the torque tube. Given the unique structural characteristics, it is ckear that

conventional elastic-blade equations for hingeless rotor blades are not satisfactory

for bearingless-rotor analysis. The purpose of this section is to describe the
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development of analyses especially tailored to the unique requirements of bearing-
less rotors.

The first serious development of an aeroelastic analysis for bearingless rotors
was due to Bielawa (ref. 55). The differential equations of motion were derived for
the bending and torsional deformations of .a nonlinearly twisted rotor blade operat-
ing in a steady flight condition including aeroelastic characteristics germane to
composite bearingless rotors. The differential equations were formulated in terv*
of uncoupled vibratory modes with exact coupling effects owing to finite, time-
variable blade pitch and with approximate second-order effects owing to twist. Also
presented were derivations of the fully coupled inertia and aerodynamic load distri-
butions, automatic pitch-change coupling effects, structural redundancy characteris-

tics of the composite bear ngless-rotor flexbeam-torque tube pitch-control system,

and a description of the linearized equations appropriate for eigensoiuticn analy-

ses. These equations were used as the basis for the G400 code and aercelastic
investigations reported in reference 56.

Subsequently, Hodges developed a simplified analysis for coupled rotor-body
stability of rotorcraft with bearingless-rotor blades. FLAIR (flexbeam air reso-

nance) was intended for efficient application as a prelimindry design tool and
treated the blade as a rigid body, thereby avoiding the complexity of an elastic

blcde formulation (refs. 57,58). The objective was an analysis that possessed the
simplicity of a rigid-blade model but included a relatively detailed treatment of

the flexbeam and pitch-control system. The analysis was based on modeling the rotor

blade as a rigid body attached to the hub by an elastic beam for the flexbeam por-

tion of a bearingless-rotor blade. The flexbeam deflections were treated exactly
for a Euler-Bernoulli beam segment, using the Kirchhoff-Love equations, which are
valid for large rotations. An iterative structural analysis including geometric

nonlinearities, solved by a shooting algorithm for two-point boundary-value prob-
lems, yielded the equilibrium deflected shape of the flexbeam. A numerical pertur-

bation scheme was then used to obtain the stiffness matrix for the tip of the flex-

beam. No ordering scheme was used. The flexbeam degrees of freedom were the three
rotations and three translations of the outboard end of the flexbeam. The rigid-

blade inertial, gravity, and quasi-steady aerodynamic equations were derived for

arbitrarily large deflections and analytically linearized about equilibrium. The

linear flexbeam and blade equations were developed as part of the coupled rotor-body

analysis described later in this section under Helicopter Rotor-Body Equations. The
treatment of the bearingless rotor in FLAIR was sufficiently flexible to permit

analysis of all of the principal configurations in figure 10. The principal lirita-

tion of FLA:R was the lack of an elastic blade to capture the intermodal crupling

characteristics typical of many bearingless-rotor blade instabilities.

Another bearingless-rotor analysis was developed by Sivaneri and Chopra, based

on a finite-element approach for the isolated rotor blade including treatment of

dual-flexbeam configurations (ref. 59).

The most recent development in bearingless rotor blade analysis is the GRASP

code, a finite-element analysis develooea by Hodges et al. to treat coupled rotor-

body stability of a rotorcraft in hover (ref. 60). GRASP (General Rotorcraft
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Aeromechartical Stability Program) is an advanced analysis system capable of modeling
rotorcraft structures in a very general manner, including rotor-body coupling. In
this sense it is not uniquely designed to handle bearingless-rotor blades; it simply
has the capability to handle arbitrarily complex bearingless-rotor configurations
along with numerous other rotor types as well. In fact, d general finite-element
analysis provides the only realistic means to address the potential complexity of
bearingless rotors. The elements and constraints in GRASP permit the modeling of
large rotation elastic beams, rigid-body maszes, and mechanical joints capable of
translation and large rotation. The analysis includes quasi-steady aerodynamic
formulation and dynamic inflow. A more complete description of the features of
GRASP is given the following subsection and later in this section under Helicopter
Rotor-Body Equations.

Finite element formulations- The previous sections described development of
elastic-bladc equations aimed at treating the fundamental nonlinear behavior of
cantilever rotor blades. Applications to stability analysis typically use a modal
approach to spatially discretize and solve the elastic-blade partial differential
equation3. A Galerkin approach is commonly used to generate ordinary differential
equations in terms of a number of bending and torsion modes of the blade. There are
a number of limitations to this approach and inevitably the use of finite-element
methods is desirable. A considerable part of rotorcraft structural mechanics
research effort has begun to focus in this direction.

9 Some of the limitations of the modal methods stem from complexities of deriving
nonlinear equations for rotating beams. These equations can be extremely-long and
complicated. The problem is made worse by the explicit appearance of many struc-
tural and geometric configuration parameters that play an important role in the
aeroelastic stability of hingeless rotor blades. For bearingless rotors, the redun-
dant load paths present further difficulty. In addition to their complexity and
lack of generality, the modal equations cannot accurately represent rotor blades
having large or discontinuous radial variations in mass or in structural and geo-
metric properties. With these'difficulties as a stimulus, Army-NASA researchers
began to investigate the application of finite-element methods to the problems of
rotating slender beams undergoing nonlinear axial, bending, and torsional
deformations.

In one of the first applications, Hohenemser and Yin studied a simple stability
problemn involving flap bending of rotor blades mounted on flexible supports
(ref. 61). Strictly speaKing, their approach utilized the transfer macrix tech-
nique, not a true finite element method, but one in common use in the rotorcralt
field. Friedmann and Straub developed a weighted residual Galerkin-type finite-

element method to study the aeroelastic stability of flap-lag motions of a hingeless
rotor blade in the hovering flight condition (ref. 62). This method was alsc
applied in re 'erences 63 and 64 to formulate the finite-element equations for flap-
lag-torsion • hingeless rotor blades in forward flight and to investigate flap-lag
stability ch;aracteriscics in forward flight.

The methcd is based on the partial differential equations of equilibrium, which
are discretized directly, ising a local weighted residual Galerkin =ethod. Each
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element has eight nodal degrees of freedom representing flap and lag bending dis-
placements and slopes at the ends of the elern*nt. The later analyses that treat'
torsion have three torsional degrees of freedom, one at each end of the element and

one in the middle. Blade bending is discretized using conventional shape functions

for beam bending based on cubic HeLumite polynomials. Torsion is discretized using a

quadratic function resulting in the additional internal nodal degree of freedom.

The axial displacement has no degrees of freedom associated directly with it because

the blade is assumed to be inextensional. The element matrices obtained in this

procedure are dependent on the nonlinear equilibrium position. The element matrices

are assembled using a conventional direct stiffness method. After assembly, a

normal-mode transformation is used to reduce the number of nodal degrees of freedom.

In another investigation, Celi and Friedmann (ref. 65), treat the aeroelastic

stability of swept-tip rotor blades using a Galerkin finite-element technique

(ref. 62) including a apecial element for the structural, inertial, and aerodynamic

terms of the swept tip. The element equations were based on the Shamie and

Friedmann formulation (ref. 24).

Another approach to finite-element formulations for rotor blade aeroelasticity

is based on a conventional local Rayleigh-Ritz finite-element method. Sivaneri and

Chopra studied the problem of hingeless rotor blade flap-lag-torsion in hover and

solved the nonlinear equilibrium equations using the finite-element analysis

directly (ref. 66). A normal-mode method is used for the linearized flutter analy-

sis. Chopra and Sivaneri (ref. 67) and Sivaneri and Chopra (ref. 59) extended this

work with a more ellborate fifteen-degree-of-freedom beam finite elemetst applied to

analyze the hover stability of bearingless-rotor blades including multi-flexbeam

configurations. There are two reasons for the additional degrees of freedom:

(1) it is necessary to include the axial displacement explicitly in order to treat

structures with multiple load paths such as bearingless rotor blades; and (2) it is

necessary to have a more accurate fnterpolation of axial displacement so that inac-

curacies in determining the effective bending stiffness, owing to a form of membrane

locking, do not occur.

Early work at the Aeroflightdynamics Directorate was aimed at development of a

finite-element analysis with ample modeling flexibility to deal with rea-iscic

bearingless-rotor-blade configurations. The work described above was based on

discretization of the equations for a rotating blade having a specified orienta
d-:

tion. That is, the finite.element equations were not sufficienrl; general to allow

assembly of elements together at arbitrary angles to one another. An approach

general enough to allow coupling of rotating blade elements together in such a

manner still did not exist.

Furthermore, rotating beam finite elements are subject to a form of membrare

locking i:hat can generate serious errors, especially in portions of the structure

where the geometric stiffness must be determined from the strain instead of from the

integration of the loading, such as in a redundant load path (see ref. 59). Cne way

to circumvent this problem is to introduce generalized coordinatps associated with

higher-order polynomials. Since redundant load paths are :ypical of bearingless-
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rotor systems, early work at the Aeroflightdynamics Directorate was aimed at devel-
opment of a variable-order finite element.

Hodges investigated the vibration and response of nonuniform rotating beams
with discontinuities in mass and bending stiffness (ref. 68). The direct analytical
method of Ritz was used by Hodges to generate finite elements with shape functions
of arbitrary order (ref. 69). Free vibration and forced-response results were
presented to establish the capabilities of the method. Results for planar bending
of a rotating beam indicated excellent convergence to exact solutions, even at
points of discontinuity and near bcundaries. The development of this variable-order
finite-element method continued to progress toward incorporation into conventional
finite-element codes. Hodges and Rutkowski (ref. 70) and Hodges (ref. 71) provided
details on development of shape functions and modified the work reported in refer-
ence 69 to a true finite-element form so that the generalized coorainates were
actual displacements and slopes at ends of the element. In addition to the usual
nodal displacements at the ends of the element, an arbitrary number of additional
internal generalized coordinates were used.

Hodgcs extended the AFDD efforts in rotor-blade finite-element analysis to the
implementation of a variable-order finite element based on the large rotation-beam

* theory (ref. 53). This element was the basis for the aeroelastic beam element
developed for the GRASP analysis that will be discussed in more detail in this
section under Helicopter Rotor-Body Equations.

The aeroelastic beam element developed for GRASP represents a slender-beam
element without shear deformation that is subject to elastic, inertial, gravita-
tional, and aerodynamic forces. The element is derived on the basis of small
strains and large rotations (limited to 900 because of use of orientation angles to
define finite rotation kinematics inside the element). The element degrees of
freedom include a reference frame, structural nodes at the ends of the beam, an air
node, and internal degrees of freedom for increased accuracy of beam-deformation
calculations. The main element properties include mass, inertias, pretwist, axial.
bending, and torsion stiffness, structural damping, and airfoil aerodynamic proper-
ties, including chordwise aerodynamic center offsets. The GRASP element is not
intended to accommodate composite material properties.

One finding from Hodges et al. (ref. 35), which should be mentioned at this
point for the benefit of ongoing finite-element development work, is that the tor-
sional kinematical variable used by Hodges and Dowell (ref. 3), although suitable
for integration and modal methods of solution, may not be suitable in a general-
purpose finite-element context. This applies both to this variable, defined as :he

, integral of the torsional component of the curvature vector, and to analogous axial
t disolacement variables, defined as integrals of axial strain. The oresence of

integrals in the kinematical relations can introduce undesirable couplings into a
finite-element analysis. The work by Hodges uses an angle, which is suitable for
finite element work; use of Rodrigues parameters would also te suitable (ref. 53).

Composites- Most iodern rotor blades are constructed from comoosite -ate-
rials. The initial izpetus for the use of comoosites was the very significart
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improvement in fatigue life and damage tolerance of the olades and,, -later, the
benefits ifforded by the ability to incorporate more 'refined aerodynamics into
planform and airfoil section geometries. For advanced rotor blades, composite
materials provide opportunities for structural simplicity of hingeless and oearing-
less designs, and structural couplings to improve the aeroelastic stability of these
configurations. Most structural models described above rave been limited to isotro-
pic material properties. Rotor blades and flexbeam strtures are ouilt up from
composite materials, and cannot be regarded as isotropic. There may be coupling
between extension, bending, and shear deformation; warping effects may oe much more
significant. These complexities generally invalidate the Euler-Bernoulli beam

assumptions that plane beam cross sections remain plane and perpendicular to the

elastic axis.

Work in this area can be classed in two !is-inc: areas: C) the zevelopnenz of

modeling approaches so that the three-dimensional cons.::ucive :aw for general
anisotropic elasticity can be reduced to a simple one-acnens:onal :orm 'or :Ie beam
problem; and (2) the use of a specialized. simoe model :'zr :heo1ade cross section
in order to assess the stability of rotor blacei for :ar:-us values of ply- orienta-

•tion and other geometric parameters.

Work in the first category focuses on the :etermina::c'. of the shear center

location and warp functions. Cross-section pr"-.z t- ::nen ze eva..aec :=.se
in the one-dimensional beam theory, which has neen .eve.::ec 41:h 3:aprczriaae ,:ne-

matics and material cinstants. Determination of :ne shear :enter [oca::tn i -aro
functions can either be from use of a two-dimens:nal 'inn:e-eleren: mcceI ot he
blade cross section or analytically from simplified znvs:2a. noceis -or :ne cross
section. Fundamental work by Rehfield and Murthy was an-ed t represen::ng 7cncias-
si& effects of composites on beam structural zenavior ,ref. -2. 7hese effects are
related to transverse shear, bending-related warp:ng, an: : sso:--re.a:e4 ar::ng.
Bauchau developed an anisotropic beam theory .n 4nicn .u:-3:'- .ae :rcss-seci=n
-warping is determinel from a finite-element so.-::on of I _a:*aCe-:v:e z:xa:::n cver
the cross section (ref. 73). The solution 4s exzresseC :=:--s :f an:
number of so-called eigenwarpings. _n pract:ce. :n/v a :. n.ear::rzs :r-
needed.

More recently. Kos,naza developed a me:ncd ::r nal,::r n:znlv sue:: :-r.eZ
olades constructed of anisonropic comoosite Tater:als .r=:. ;- :n:e-,.enen:
model of :he cross section yields zoth ;n-'are ina t;-*:- e ar::-z ".r.::ns
and :he snear zen:er iccat:on. .his metnco .s . a: Z "
Kim and Lee have jeveloped a similar approacn. a.:nougn :: ,s 4e!era. -e:.
consideraoly simpler Approacn was cevelopec v Rene;.z. .nn a ze- r.
section is approximated as a multi-ceiled zox :ea= -nose nea.* zenter .:an:a::
warp function can be determined anayz:ca:: re'. 6). -e yet:'.el _
methods :oth Yield resui:s of ,cmoaraoie accu:ra.r : -r ::. :e-sx re:'.
these methods has vet been 4eveloced and val:zace4 to tre' :{ree cssa:-:
general-purpose analysis of :o:cr-oiace ,ross Jet::ns.

'Or in :ne second Ja:ezory -ias : t- '.'-':na:::
2o-iorvers. ong and h-ora deVeI: , e e .. ......... -.. . .. "'.



flap-las-torsion stability of a hingeless rotor blade in hover (ref. 78). The blade
was treated as a sin&le-cell-dominated shell beam composed of an arbitrary layup of

Scomposite plies. Stiffness coupling terms caused by, bending-torsion and tension-

torion couplings were correlated with different ,omposite ply layups. The results
show that such couplings can have a significant effect on the stability.

Coupled Rotorcraft Equations

Equations for isolated rotor. blades have been discussed in previous sections;
this section deals with coupled rotorcraft equations where the isolated blade equa-

tions are combined with equations of other blades or rotorcraft cumponents such as

fuselages, support systems, or nacelle-pylon-wing components. The most important
ccupling is that between the rotating and fixed system; this coupling is one of the

central features of rotorcraft dynamics. Other important coupled systems involve
rotor feedback control ilystems, certain rotor types such as teetering or gimbal

rotors that structurally couple rotor. blades, or even the dynamic inflow model.

This section is divided into two principal areas, helicopter coupled rotor-body
systems and tilt-rotor systems.

Helicopter rotor-body equations- Rotor-body coupling is important in aeroelas-
tic stability because of the strongly destabilizing mechanical coupling that occurs
for some rotorcraft configurations; for example, the classic ground resonance

treated by Coleman and Feingold (ref. 79). When both aerodynamic and aeroelastic

considerations are involved, this phenomenon is often termed aeromachanical stabil-
ity. The principal issue in coupled rotor-body equations of motion is the fact that
rotor-blade equations are written in a rotating frame of reference whereas fuselage

equations are written in a nonrotating frame of reference. When arbitrarily large

Wrigid-body motions of an elastically deforming fuselage are considered, this becomes
a formidable problem in dynamics.

For most problems in aercelastic stability, only small motions are involved and
the problem is relatively straightforward. The use of a coordinate transformation

from the blade-fixed rotating system to the body-fixed nonrotating coordinate system
has long been used in deriving equations for rotorcraft analysis. Hohenemser and

Yin developed a formal version of this technique known as =iltiblade coordinates
that has since gained wide acceptance in the rotorcraft cechnical community

(ref. 80). The multiblade transformation changes tiade equations from a rotating

frame of reference to a nonrotating frame of refereice and also cembines the equa-
tions for a given degree of freedom of k individual blades into a system of equa-
tions for the corresponding multiblade degrees of freedom for a roror having k

olades. it is particularly useful for formulating equatiens of cotnled rotor-body
systems, for simplifying the periodic-coefficient equations of motion of rotor

olades in forward flight, and for providing ro:or :egrees of freeccm that better
iend themselves to physical interpretation of analysis results than individu,4l blade
degrees of freedom.

Within the scope of this survey, important worc on coupled rotor-body aerome-

'hanical stability of hingeless rotorcraft In hover 4as carried out by CardiLnale
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using a simplified modal representtion for the blade together with coupled fuselage
and control gyro equations (ref. 81). Hammond developed equations of motion, using
the Coleman and Feingold physical model, to represent rotorcraft configur,'tions
having one of the blade dampers inoperative (ref. 82). In general, these equations
have periodic coefficients, and Hammond used Floquet theory to solve them. Johnston
and Cassarino developed a system of coupled rotor-body equations, based on a modal
analysis of covled flap-lag-torsion dynamics for an elastic blade (ref. 83). The.
equations were linearized for aeroelastic stability analysis in hover and forward
flight. The latter equations were approximated by the constant-coefficient form of
the multibL.de coordinate equations. A more restricted example of coupied rotor-
blade equations is the two-bladed teetering-rotor problem traated by Shamie and
Friedmann (ref. 84). Hohen-.mser and Yin developed coupled equations for a rotor and
elastic supports, using a finite-element formulation (ref. 61).

Johnson developed a very complete set of equations of motion for an analytical
model of the aeroelastic behavior of a rotorcraft operating in a wind tunnel or in

free flight (ref. 85). A unified development is presented for a wide class of
rotors, helicopters, and operating conditions. The rotor model includes coupled
flap-lag bending and blade torsion degrees of freedom, and is applicable to articu-

lated, hingeless, gimballed, and teetering rotors with an arbitrary number of

blades. The aerodynamic model is valid for both high and low inflow, and for axial
and forward flight. The rotor rotational speed dynamics, including engine inertia
and damping, and the perturbation inflow dynamics are included. A normal-mode
representation of the wind-tunnel test module, strut, and balance system is used.

The aeroelastic analysis for the rotorcraft in flight is applicable to a general
two-rotor aircraft, including single main-rotor and tandem helicopter configura-
tions, and side-by-side or tilting proprotor aircraft configurations. The aircraft
motion is represented by the six rigid-body degrees of freedom and the elastic free-
vibration modes of the airframe. The aircraft model includes rotor-fuselage-tail

aerodynamic interference, a transmission and engine dynamics model, and the pilot's

controls. A constant-coeffricient approximation for forward flight and a quasi-
static approximation for the low-frequency dynamics are also described. The coupled
rotorcraft or support dynamics are represented by a set of linear differential
equations, froa which the stability and aeroelastic response may be determined.

A simplified system of equations for air-ground resonance of hingeless rotors

in hover was developed by Ormiston for application to parametric investigations
reported in reference 86. The equations of motion treat a simplified model of a
hingeless-rotor helicopter having spring-restrained, hinged-rigid blades with flap-

lag motion (ref. 87). Kinematic aeroelastic couplings were included to represent

the effects of blade torsion and typical couplings of hingeless blades.

Hodges developed a coupled rotor-body analysis for aeromechanical stability of
bearingiess-rotor helicopters in hover, axial flight, and ground contact. A
detailed derivation of the equations of motion for FLAIR (flexbeam air resonance) is

given in references 57 and 58. Treatment of the bearingless blade was described
earlier in this section. The fuselage is treated as a rigid body and the landing
gear as simple spring elements. The equations are limited to hover and axial Plight
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and include four rigid-body degrees ot freedom for the fuselage pitch and roll. angular motion, and longitudinal and lateral translations.

The analysis was based on the set of generalized forces otiing to inertia,
gravity, body springs and dampers (for the aircraft in ground contact), quasi-steady
aerodynamics, and the flexbeam structure. All of these generalized forces (except
those caused by flexbeam struetural loads) were written exactly, for arbitrarily
large deflections, and analytically linearized about equilibrium. The linearized
perturbation forces and moments associated with the flexbeam structure, the pitch-
control links, body springs and dampers, and inertial, gravitational, and aerody-
namic loadings, when combined, yielded a system of constant-coefficient, linear,
homogeneous, ordinary differential equations in the nonrotating reference system.
Only the cyclic multiblade rotor modes were retained. Solutions were obtained by
standard eigenanalysis. Results of stability investigations will te discussed
below. The FLAIR analysis was used to support the design development of the Boeing
Vertol Bearingless Main Rotor (refs. 88-90), and it has been extended and used in
support of the ITR/FRR bearingless rotor preliminary design as reported by Hooper
(ref. 91).

Warmbrodt and Friedmann also developed equations of motion for coupling rotor-
fuselage and rotor-support systems (refs. 92,93). A.n aerodynamic formulation is
included for hover and forward flight. The equations are written in partial differ-
ential equation form and are applicable to the aeroelastic stability problem. The
importance of an ordering scheme for deriving a consistent set of nonlinear coupled
rotor-body equations is emphasized.

Following earlier work (ref. 85), Johnson extended the general rotorcraft
analysis to a more comprehensive analysis known as CAHRAD (refs. 94-96). Intended
fov application to both rotorcraft dynamic response and stability, this comprehen-
sive analysis is intended for calculating performance, loads, noise, vibration, gust
response, flight dynamics, handling qualities, and aeroelastic stability. The
equations applicable for aeroelastic stability are similar to those developed in
reference 85.

A coupled rotor-fuselage analysis for application to multi-rotor hybrid heavy-
lift vehicles was developeC by Venkatesan and Friedmann (refs. 97,98). These equa-
tions represent the blades as spring-restrained, flap-lag hinged-rigid blades and
the fixed system as rigid bodies attached to a flexible supporting structure. The
aerodynamic formulation is derived for hover and forward flight.

The GRASP analysis developed by Hodges et al. (ref. 60) i3s a major development
for coupled roto-craft systems. GRASP (General Rotorcraft Aeromechanical Stability
Program) is a hybrid of a finite-element program and a spocecraft-oriened multibody
program. GRASP differs from standard finite-element programs by incorporating
multiple levels of substructures which can translate or rotate relative to other
substructures without small-angle approxifaations. This capability facilitates the
modeling of rotorcraft structures, including the rotating-nonrotating interface and
details of the blade-root kinematics for various rotor types. GRASP treats aero-
elastic effects, including dynamic inflow (treated later in this section) and non-
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Slinear aerodynamic coefficients. The aeroelastic beam element of GRASP was
described in more detail earlier in this section under Finite-Element Formulation.
The analysis includes the equations of equilibrium for the hover flight condition
and calculates linearized perturbation equations for stability analyses. To illus-
trate how a problem is defined using the hierarchical nubstructuring of the GRASP
system, a simple coupled rotor-body problem was chosen for modeling. This example
is illustratad in figure 11 (from ref. 60). Three blades are combined to form a

rotor subsystem which is in turn combined with the air mass and fuselage rigid-body

elements to form the complete coupled rotor-body system.

Tilt rotor analysis methods- Analysis of tilting proprotor dynamics has histor-

ically drawn from rotorcraft technology. Tilt-rotor aeroelastic stability analysis

is fundamentally similar to coupled rotor-body helicopter dynamics; the differences

in analysis are mainly a matter of detail, primarily the complexity of the physical

system and the many degrees of freedom needed to insure a reasonably complete
dynamic analysis. In general, tit,-rotor analysis must include coupled wing bending

and torsion, pylon pitch and yaw, rotor-blade flap bending, lead-lag bending and

torsion, as well as rotor speed and rigid-body airframe degrees of freedom.

Although the rotors operate in axial flow conditions when in the hover and airplane

modes, forward flight operation in the helicopter mode and the intermediate nacelle

tilt conversion mode introduce the same periodic coefficient effects into the equa-

tions of motion as experienced by the helicopter. Some of the differences between

helicopter and tilt-rotor analysis include larger rotor speed variations, larger

collective pitch range and blade twist, high inflow aerodynamics, a id different

rotor-airframe wake interference effects.

Before the period addressed in this survey, government researchers contributed

to the development and understanding of theories of propeller-nacelle whirl flutter,

using simplified methods to understand the mechanisms and predict the relevant

phenomena. Typical analyses were developed by Reed and Bland, Houbolt and Reed, and

Reed; this work will be discussed in section 3 under Tilt-Rotor Aircraft Stabil-

ity. These methods treated the propeller blades as rigidly attached to a hub

mounted on a nacelle free to pivot in pitch and yaw. Aerodynamic forces for the

axial flow condition typically were derived from simple quasi-steady strip theory.

Such an approach, although generally sufficient for classical propeller whirl flut-

ter, is not adequate for tilt-rotor aircraft configurations. Additional require-

ments for such analyses were addressed independently in the works of Kvaternik and

Johnson.

Kvaternik developed a proprotor aeroelastic stability analysis including wing,

nacelle, and rotor-blade degrees of freedom (ref. 99). All elements were modeled as

rigid bodies with spring-restrained hinges where appropriate. The nacelle included

pitch and yaw degrees of freedom and the rotor blades were hinged for flap

motions. The effectiveness of this analysis in pr'edicting proprotor whirl flutter

was verified by extensive comparisons with model test data described by Kvaternik

and Kohn (ref. 100). This analysis was the basis for later extensions that included

provisions for a gimbaled hub with offset coning hinges, blade lead-lag motion, a

modal representation of the airframe structure, Dill span free-free or semispan
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* cantilevered configurations, and rigid-body aircraft degrees of freedom. Nonthrust-
Ing-, windmilling-, and cruise-mode flight conditions were included. This analysis
was named,, PASTA (Proporotor Aeroelastic Stability Analysis) and was later used in

support of V-22 aeroelastic model testing in the NASA Langley Transonic Dynamics
Tunnel.

Johnson developed a series of tilt-rotor aeroelastic stability analyses later
incorporated in the comprehensive CAMRAD analysis for rotorcraft performance, loads,
stability and control, aeroelastic stability, and acoustics. CAMRAD contains the
capability to predict the linear stability characteristics of tilt-rotor configura-
tions in various flight conditions (ref. 94). The initial development of the tilt-
rotor equations, reported in reference 101, treated a semispan configuration con-
sisting of a cantilever wing, nacelle, and proprotor and modeled uncoupled flap and
lead-lag bending of elastic rotor blades, and elastic beam and chord bending and
torsion of the wing. Quasi-steady aerodynamic forces were included and equations
for rotors having two or more blades were developed. For the two-bladed configura-
tions the equations included periodic coefficients; for rotors having three or more
blades, the use of the multiblade transformation yielded equations with constant
coefficients. The equations in reference 101 were used by Johnson to correlate with
full-scale experimental test data of two semispan wing-nacelle-proprotor models.

Johnson extended his analysis in reference 102 by refining the rotor modeling
to include coupled elastic flap and lead-lag bending modes, rigid pitch motion of
the blades to reflect pitch control system flexibility, blade elastic torsion,
gimbal tilt, and rotor speed perturbations. The aerodynamic model treated high and

* low inflow, axial and nonaxial flight. The effects of compressibility and static
stall on the airfoil coefficients were included. The rotor model included gimbal
undersling, torque offset, precone, droop, sweep, and feather axis offset. Blade
section center of gravity, aerodynamic center, and tension axis offsets from the
elastic axis were included. In reference 103, Johnson added an engine-transmission-
governor model including an interconnect shaft between the two rotors, refined the
method for treating kinematic pitch-bending coupling of the blade, and extended the
rotor aerodynamics model to include reverse flow. In reference 85, Johnson con-
tinued development of rotorcraft aeroela3tic analysis, generalizing a system of
coupled rotor-body equations to treat multirotor helicopters (single main rotor and
tail rotor, twin rotor tandem) and symmetric tilt-rotor vehicles in both free flight
or in wind tunnel or ground contact conditions. For tilt rotors, this anelysis was

advanced over previous work because it included complete rigid-body aircraft degrees

of freedom and two complete proprotors. Linearized small-perturbation equations
were developed for aeroelastic stability analysis.

Finally, this analytical model was used as the basis for the CANRAD comprehen-

sive rotorcraft analysis for use in predicting performznce loads, stability and
control, and acoustics characteristics in addition to aeroelastic stability

(ref. 94). Johnson used these analyses for a number of research investigations of
tilt-rotor aeroelastic stability that will be discusse.d below. Johnson used XV-1b

wind-tunnel and flight-test data for comparison with the CAMRAD analysis to assess

its adequacy to predict tilt-rotor aircraft performance, loads, and stability
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(ref. 104). Generally the aeroelastic stability prediction capability was judged to
be good; however, additional capabilities were considered desirable for future
configurations such as bearingless rotors.

In summary, the development of aeroelastic stability.analysis capability

described herein has had and will continue to have a significant effect on the

successful development of the revolutionary tilt-rotor aircraft concept.

UNSTEADY AERODYNAMICS

This section will treat developments in rotor unsteady aerodynamics applicable

to rotorcraft aeroelastic stability.

Unsteady aerodynamics of rotor blades is considerably more complex than that of

fixed wings for which flutter analysis for three-dimensional, unsteady, compressible

flG4 is reasonably well developed. For the rotor blade, many aeroelastic stability

problems may be successfully treated with two-dimensional quasi-steady aerodynamics;
however, there is also a need to treat unsteady, compressible flow, dynamic stall,

and varying free-stream velocity, as well as three-dimensional effects of returning
wake sheets and variable sweep angle. In view of these complications, progress in

advanced unsteady aerodynamics for rotary wing applications has been slow, and

researchers and designers alike have had to rely on approximate simplified methods.

* Most rotary-wing aerodynamics research has been directed toward rotor perfor-

mance, loads, vibrations, and stability and control. For these applications, rotor

aerodynamics generally is divided into two parts: rotor-blade airfoil section
airloads and rotor-wake-induced inflow. The rotor-blade section airloads are calcu-

lated using approximate or empirical methods such as linear steady or unsteady thin-

airfoil theory, or from airfoil aerodynamic coefficients tabulated as a function of

angle of attack and Mach number. Empirical corrections are applied to account for
blade sweep, compressibility, static and dynamic stall, and blade-vortex interaction

effects. The wake-induced velocity is needed to define the local blade-section

angle of attack from which blade-section airloads are calculated. Various momentum

and discrete vortex-wake theories have been developed for the rotor-induced
inflow. The formulations for airfoil airloads and wake-induced velocity are solved

together with the blade dynamic response equations either by numerical integration
in the time domain, or by iteratively calculating the response coefficients in the

frequency doinain.

In general, this approach provides the rotor transient or steady-state periodic

airloads that can be used to calculate rotor performance, loads, vibrations, and
vehicle stability and control. However, these methods do not yield direct informa-
tion on rotor aeroelastic stability characteristics. It is sometimes possible to
use direct numerical integration of the rotor loads equations to determine stabil-

ity, but it is more desirable to solve linear differential equations by means of
eigenanalysis to obtain stability characteristics directly. .
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In general, rotor-blade flutter analysis employing unsteady aerodynamic theory
is carried out using methods adopted. from fixed-wing flutter analysis. Fixed-wing
unsteady aerodynamic theory, in contrast to the typical rotorcraft approach
described above, generally relates the airfoil airloads directly to the motion of
Lhe airfoil-combining airfoil-section airloads and wake-induced inflow in a single
analytical model. The unsteady aerodynamic theory is generally formulated in the
frequency domain-harmonic airloads expressed in terms of harmonic airfoil
motions. Aeroelastic stability equations therefore assume airfoil motion to be
harmonic and solutions that satisfy this assumption therefore determine the neutral
stability condition.

If a time-domain aerodynamic theory is available, it is preferable to use a
standard eigenanaly3is solution yielding both damping and frequency for conditions
of arbitrary stability. The latter approach iS typically used for quasi-steady
theory but is more difficult for sophisticated unsteady aerodynamics.

The scope of this section will cover a variety of unsteady aerodynamic develop-
ments, including two-dimensional linear and nonlinear unsteady aerodynamic theory;
finite state models; three-dimensional unsteady aerodynamic theory; and dynamic
inflow, a simplified three-dimensional unsteady actuator d~sc rotor wake model.

Two-Dimensional Unsteady Aerodynamics

As noted above, rotary-wing aeroelastic stability has borrowed from methods
* developed for fixed-wing flutter analysis. Classical Theodorsen unsteady aerody-

namic theory is applicable for rotor-blade bending-torsion flutter anq is commonly
applied in quasi-steady form (ref. 105). Loewy's theory, which extends Theodorsen
theory to the hovering rotor problem, approximately represents the effects of wake
vorticity of previous blade passages (ref. 106). Greenberg's theory is commonly
applied to account for the effects of varying free-stream velocity of rotor-blade
airfoil sections caused by forward flight or inplane motion of the blade
(ref. 107). These theories formed a basis for government research activities
addressed in this survey.

One area addressed by government researchers is the application of these two-
dimensional, unsteady aerodynamic theories to rotor-blade problem;. The elastic
motion of a fixed-wing configuration is clearly defined, but a rotor blade undergo-
ing moderately large deformations in elastic bending and torsion and pitch rotations
is kinematically more. complex and requires special attention. Relating the rotor-
blade motion variables to the airfoil-motion variables of two-dimensional unsteady
aerodynamic theory was addressed by Johnson (ref. 108), Kaza and Kvaternik
(ref. 109), Friedmann and Yuan (ref. 110), and Peters (ref. 111). These works
indicate that a failure to properly include the aerodynamic theory in the aeroelas-
tic analysis can lead to erroneous stability predictions.

Recent efforts have also been made to transform rotor unsteady aerodynamic
theories from the frequency domain to the time-domain. Frequency-domain
formulations are not convenient Lo use for aeroelastic stability analysis and,
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. except for neutral stability conditions, provide only an approximation to unsteady
aerodynamics for transierpt motion. Dinyavari and Friedmann developed approximate
time-domain models for Loewy and Greenberg unsteady aerodynamicotheories
(ref. 112). The finite-state models were obtained by using Pade approximants of the
appropriate lift deficiency functions contained in the Loewy and Greenberg theo-
ries. The approximation did not, however, capture the oscillatory behavior of the
Loewy lift-aeficiency function that represents the effects of wake vorticity shed by
previous revolutions of the rotor blades.

The Greenberg finite-state model was applied to predict aeroelastiC stability
of a rotor blade in hover and forward flight (ref. 113). Friedmann and Venkatesan
also formulated another technique for approximating the Loewy lift-deficiency func-
tion (refs. 114-116). This method, derived from linear control system theory and

termed the Bode plot method, involves curve fitting an approximate function for the

Bode plot'of the lift-deficiency function. This model may .be incorporated in rotor
aeroelastic equations and solved by eigenanalysis techniques to yield frequency and
damping characteristics. Although these methods are not yet in conmon use by rotor-
craft analysts, they are an important step in beginning to take advantage of analy-
sis capabilities that are in use in the fixed-wing field.

Two-dimensional linear unsteady aerodynamic theory, even without nonlinear

stall behavior, is a valuable and powerful tool for predicting rotor aeroelastic
stability in the hover flight condition, but there are serious theoretical limita-
tions for forward flight applications. As advance ratio increases, reverse flow and. localized high-lift conditions produce time-varying nonlinear stall effects. Recent
research aimed at aeroelastic stability analysis applications has begun to focus on
nonlinear aerodynamics problems.

Ormiston and Bousman used quasi-steady stall analysis for application to flap-
lag stability in hover (ref. 117). It was shown that the static nonlinearities in
the airfoil lift and drag coefficients versus angle of attack, when included in a

linearized aeroelastic analysis, were sufficient to adequately account for differ-
ences observed between measured blade-lead-lag damping and predictions based on

unstalled airfoil theory.

Rogers has recently made progress in adapting nonlinear dynamic stall models to
aeroelastic stability analysis in forward flight (ref. 118). Dynamic stall models
have been developed for use in rotor airloads analysis, that ic, in predicting rotor
blade dynamic response and the associaked unsteady blade airloads in forward flight,
primarily in steady-state, trimmed flight conditions. These are usually empirical

models in either the time domain or frequency domain and they rely on experimental
data obtained from oscillating airfoil testing. Tran and Petot developed a time
domain model consisting of differential equations relating the unsteady aerodynamic

coefficients to airfoil motion variables (ref. 119). The parameters in these equa-
tions are functions of mean angle of attack of the airfoil and are derived from

airfoil test data. However the formulation is valid for arbitrary motion rather
than Just simple harmonic motion. Rogers and Peters used the Tran-Petot nonlinear
stall model to analyze the flapping stability of a rotor blade in forward flight
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(ref. 118). The model was used to numerically calculate a nonlinear periodic equi-
librium solution for rotor-blade response in forward flight.

Thereafter the nonlinear equations were analytically linearized for small-
perturbation motions about the periodic equilibrium solution. The resulting peri-
odic coefficient, linear differential equations were solved by Floquet theory to
yield frequency and damping of the blade flapping motion.

Peters extended the Tran-Petot dynamic stall model with the objective of devel-
oping a unified model for unsteady 'aerodynamic lift of a two-dimensional airfoil
section for use in rotor-blade aeroelastic stability analysis (ref. 111). The model
is unified in the sense that it explicitly distinguishes between airfoil pitch and

plunge motion and includes unsteady velocity, reverse flow, and large angles of

attack. The model also reduces to Greenberg theory at small angles of attack and
further reduces to Theodorsen theory for steady velocity.

Three-Dimensional Unsteady Aercdynamics

There is much to be done for three-dimensional unsteady aerodynamics applicable

to rotor-blade aeroelastic stability. An important early work in the field by

Miller developed an analytical formulation for unsteady airloading (ref. 120).

Substantial contributions have been made at ONERA by Dat (ref. 121), and more

recently by Runyan and Tai (ref. 122). The problem, even in linear form, is a
difficult one that has not attracted sufficient attention by rotorcraft

researchers. Nevertheless, a rational, three-dimensional linear unsteady aerody-

namic theory applicable to forward flight would be very useful for basic aeroelastic

stability analyses in forward flight.

Much of the problem of three-dimensional unsteady aerodynamics of rotors lies

in the complexity of the rotor configuration. In the case of fixed-wing unsteady

aerodynamics, the extension from the two-dimensional airfoil problem to the three-
dimensional problem involves the spanwise variations in airloads distribution and

(implicitly) the associated shed and trailed vorticity convected from the wing by

the free-stream velocity in an undeformed planar sheet.

Linear potential-flow theory has been used to develop rigorous unsteady

lifting-strface aerodynamic theories (e.g., vortex doublet lattice). For the

three-dimensional rotor blade, there are also the effects of the helical wake con-

figuration, the effects of unsteady variations in free-stream velocity and direc-

tion, and the effects of other blades on the rotor. For the purposes of aeroelastic
stability, the wake geometry may be assumed undeformed, and the perturbation

unsteady aerodynamics may be obtained fron linear theory.

Dat has developed linear three-dimensional unsteady lifting-line and lifting-

surface theories for rotor blades, using an integral equation formulation based on

the acceleration potential including linear compressibility effects. The theory has

been applied to aeroelastic stability analysis of proprotor blades in axial flight

as reported by Dat (ref. 123).
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A s3Ailar theory has been developed by Runyan and Tai (refs. 122,12;). They
developed a lifting-surface theory for a helicopter rotor blade In forward flight
utilizing the concept of the linearized acceleration ptential and a doublet latttce

procedure. The method was applied to rotor blade forced-response airload calcula-
tions. Results are also calculated for the rotor-blade airload response to an
oscillatory blade-pitch excitation. Although the theory was not applied to an
aeroelastic stability analysis, it would be suitable for such investigations.

Dynamic Inflow

Background- Dynamic inflow is a simplified model for the unsteady induced
inflow of a rotor. It treats the inflow but not the airloads part of unsteady
aerodynamic theory. When used with quasi-steady airfoil theory, it provides a
convenient, inexpensive, unsteady aerodynamic model that is useful for a nimber of
rotor and coupled rotor-body low-frequency aeroelastic stability problems. In some
respects, it may be thought of as a low-frequency approximation for a linear, three-
dimensional, unsteady aerodynamic theory for a rotor blade. Dynamic Inflow repres-

ents the rotor as an actuator disk, in effect Ignoring the higher frequency influ-

ence of the airfoil shed wake while including the effect of the trailing wake. In
contrast with the relatively limited unsteady aerodynamic research efforts discussed

above, dynamic inflow theory has been the focus of considerable study. This section

will review the significant accomplishments in this area, ard also indicate the. effect of this work on rotorcraft aeroelastic stability analysis.

By 1971, it had already been established, although it was not widely recog-

nized, that the induced inflow of a rotor responds in a dynamic fashion to changes
in rotor lift. Amer recognized that. the roll damping of a helicopter was signifi-

cantly affected by the induced-flow gradients from the asymmetric lift associated

with the rolling motion (ref. 125). Sissingh was able to quantify this phenomenon

through a set of equations that related the induced-flow gradient to the lift gradi-

ent (ref. 126). Curtiss and Shupe showed that the Sissingh theory could be placed
in the form of a lift-deficiency function, involving an equivalent Lock number
(ref. 127).

Although these theories are only quasi-steady representations which assume that
inflow responds instantly to changes in thrust, it is important to recognize that

the induced inflow response to rotor loads can involve significant time delays. In

fact, Carpenter and Fridovich had performed experiments o the thrust and inflow
response of a helicopter rotor to step inputs in collective pitch and had found time

constants of the order of the apparent mass of an iupermeable.disk (refl. 128).

Furthermore, Loewy's theory, a two-dimensional approximation to unsteady rotor

aerodynamics, had been shown to yield a lift deficiency that exactly matches the
Sisslngh result at zero frequency, but that approached unity as frequency increases

(ref. 106). Yet, despite this rather extensive knowledge based on the low-frequency
behavior of tne unsteady aerodynamics of rotors, no general thco.y existed that
could model these aerodynamics in hover, in axial flight, and in forward flight.
Furthermor., there was no comprehensive set of data to compare with prospective
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theories. Government-sponsored research changed this situation beginning in the
early 1970's.

Initial interest in rotor inflow resulted from an Aeroflightdynamics Director-
ate experimental investigation of the response characteristics of hingeless rotors
at high advance ratios. This work was carried out on a 7.5-ft-dim. rotor model in
the AFDD 7- by 10-Foot Wind Tunnel (fig. 12) under a contract with Lockheed Calif-
ornia Company. The objective was to obtain a comprehensive set of data to define
the static and dynamic response characteristic3 of typical hingeless rotors to
support applications, including vehicle feedback control systems for stability
augmentation, gust alleviation, and vibration reduction. The tests involved a
simplifed four-bladed rotor having untwisted blades of very high lead-lag bending
and torsional stiffness to emphasize the basic flapping response dynamics. The,
aodel was operated at sufficiently low lift and tip speeds that stall and compres-
Jibility effects were largely avoided. This series of tests is described by
Kuczynski and S1ssingh (refs. 129,130), Kuczynski (ref. 131), and London et al.
(ref. 132).

Very low thrust testing in hover and forward flight up to advance ratios of
1.75 for high flap stiffness (p = 1.33 - 2.33) is described in reference 129. Rotor
thrust, roll, and pitch moments were measured in response to steady-state collec-
tive, cyclic, and shaft-angle inputs. In rcference 130, harmonic excitation of the
cyclic control was introduced to determine the rotor thrust, pitch, and roll moment
frequency response functions in hover and forward flight, up to u = 1.44. Steady-
state testing was carried out for lower flap stiffness (p = 1.17) and advance ratios
from u = 0.07 to 0.44. In reference 131, the blade-root bending stiffness was
reduced to achieve blade-flap frequencies (p = 1.125 to 1.28) more representative of
typical hingeless rotors. For these tests both the cyclic controls and rotor shaft
were harmonically excited for the frequency-response tests. The last series of
tests (ref. 132), was intended to gather data for moderate and high rotor thrust
levels at low to moderate advance ratios. Advance ratios included u = 0 to 0.5
and collective pitch ranged from 00 to 200. Again, static and harmonic cyclic and
shaft motion excitations were applied.

Static inflow model- One objective of these 7.5-ft model investigations was to
verify a rotor-response analysis based on linear quasi-steady aerodynamics to pre-
dict the flapping response of a rotor blade in high-advance-ratio rorward flight for
low-lift conditions without stall or compressibility. Measured data from static
control response derivatives (thrust and hub mcment coefficients, CT. CL, C,, with
respect to collective and cyclic pitch, @of , a ) were compared to a rotor-blade
flapping response analysis including several elastic flap bending modes, linear
quasi-steady aerodynamics with reversed-flow effects, and a harmonic balance solu-
tion procedure retaining an arbitrary number of harmonics (ref. 133). Comparisons
of data and theory revealed very substantial quantitAtive and qualitative differ-

ences, especially at low advance ratios. Those differences could not be explained
in terms of any known modeling errors and led to consideration of the effects of'
induced inflow.
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The results of these investigations were reported by Oriston and Peters
(ref. 134). First, the steady-state momentum theory inflow models of Sissingh,
Curtiss, and Shupe were formulated in terms of matrix equations to relate perturba-

tions in the inflow gradients to perturbations in the thrust, roll moment, and pitch
moment of the rotor. These perturbation inflow gradients characterized in a rela-
tively simple way the complex nonuniform induced-velocity field of a lifting

rotor. They represent a time- and space-averaged measure of the mean, lateral, and
longitudinal gradients of the rotor-induced inflow distribution. This inflow model

takes the form of a diagonal matrix of coupling coefficients, the L matrix, that was
rasily combined with the rotor-blade response analysis of reference 133. In hover

Xd0 4r dc.T71 r/2 0 0'
dX L 2-L] dC where iL] 0 -2 0 (1)

dXJ dC 0 0 -2

aero

and where v is the mean induced inflow of the rotor.

This model was then incorporated in the flapping response analysis described in

reference 134. As shown in figure 13, it brought the theoretical predictions and

experimental data into excellent agreement for the hover condition. The effect of
th,. Lnflow on the rotor moment response derivatives is simply a result of the fact
that a perturbation thrust is accompanied by a like perturbation in inflow. For

example, increased blade pitch increases rotor thrust which increases inflow, reduc-

ing the angle of attack, and thereby reducing a part of the original thrust
increase. This effect reduces the rotor thrust derivative. The same effect occurs

for rotor pitch and roil moments. Since the sensitivity of inflow perturbations is

inversely proportional to the mean rotor inflow, the effect illustrated in figure 13
is much more pronounced at low rotor thrust than at high rotor thrust. The momentum

theory concept works well in hover where the distribution of inflow perturbations

corresponds closely to the distribution of rotor-blade lift perturbations. This
situation does not hold in forward flight and the simple diagonal L-matrix was not
nearly as successful in correlating with the experimental data. This led to the
search for a more general L-matrix that would include off-diagonal coupling between
inflow and loads.

Simple vortex models postulated in reference 134 were more ,,uccessful than
momntum theory but the best result was a numerical empirical model f'or the L-mazrix
gcinerated by a parameter identification process to provide the best fit for the
mei ured rotor derivatives. Figure 14 shows the measured rotor control derivatives

in forward flight compared with the two different inflow models: momentum theory

and the empirical model. As noted above, momentum theory is not satisfactory for
forward flight, whereas the empirical model gives good results, confirming the
utility of the general L-matrix form of the inflow model. it may be seen that :he
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effects of inflow are most pronounced at low advance ratios. Again it i:3 noted that

these results are for the nonlifting rotor condition.

To illustrate the effect of thrust and advance ratio on the sensitivity of
rotor derivatives to the steady-state perturbation inflow model, figure 15 shows a

typical hub-moment derivative calculation with and without the inflow. The mean

inflow v is a measure of the rotor thrust. In hover, the hub-moment derivative
vanishes for zero thrust (v = 0). In forward flight the effect of inflow decreases
with advance ratio.

Dynamic inflow model- Although an understanding of the effects of induced

inflow on rotor response was not one of the original objectives of the Lockheed
experimental program, the results were significant for hingeless rotors with large

control derivatives and their important role in vehicle response and handling quali-

ties. The effect of induced inflow on articulated rotor control characteristics

received little attention because articulated rotor hub moments are small to begin

with. Beyond the effects on stability and control, the effects of inflow were the

subject of considerable speculation regarding air and ground resonance stability.

It was theorized that air and ground resonance stability of hingeless rotors bene-

fited substantially from the high rotor flap-damping characteristic of hingeless-

rotor blades. It was further speculated that loss of rotor damping at low rotor

lift (analogous to reductions of hub-moment derivatives) might therefore degrade the

ground resonance stability of hingeless-rotor helicopters. Because ground resonance

is a dynamic phenomenon, it was also postulated that such a reduction in rotor flap

damping at low rotor thrust might not occur for unsteady motions at the ground-
resonance frequencies. Therefore, it was of interest to Jetermine the transient
response characteristics of the perturbation inflow mode.

At this point Peters developed a formulation to model the transient response of

the static inflow model (ref. 135). He assumed that the inflow perturbations would

respond with a first-order time la to perturbations in the rotor airloads. This is

equivalent to postulating an apparent mass for the air, where the inertia of the air

mass prevents the static perturbation inflow from establishing itself instanta-

neously in response to -rotor airload perturbations. Combining the static inflow

model with the apparent mass terms, Peters set forth the inflow model now known as

dynamic inflow theory.

Km 0 0] i d)L0  r0-CT~

0 -K oJ fds + ' [L] dXs = dC2
~ JdX) I dC.,

) L aero

The apparent mass K. and apparent inertia KT were taken from pQ=ential .!Iw

solutions for impermeaoie disks. This formulation :'or the apparent iner::a :erns



was a generalization of the approach used by Carpenter and Fridovich'(ref. 128) to
model the unsteady uniform inflow for a rotor with unsteady thrust response. in
equation (2), a mass-flow parameter, V, allows the L-hia:rix to be applied for com-
binations of thrust (W), climb (X), and forward flight (u)

2 (x v)(\ * 2 ) (3)V U 2 , ( + vX+)2

Peters also developed a complex lift-deficiency function (for rnl ana pitch)
that included the time-delay effects. That function involves a reauced frequency
based on the steady inflow velocity. This established :ne. strong rela:ionsh:
between dynamic inflow theory and other theories of unsteady aerodynamics.

The Peters dynamic inflow model was first ccrrelated with experimental zata
obtained by Hohenemser and Crews. Here the blade pitch 3f a small two-olacea hover-
ing rotor model was harmonically excit~ed in the rotat.ng system. -he result:ng
.blade flapping was measured over a wide range of frequenz:es. Crews et a!.
(ref. 136) compared the. results calcllated using the cyr.amic inflow theory .4.:n
measured data as shown in figure 16 and confirmed the e :eiienz representa:icn
provided by the very simple dynamic inflow fornulation a-zhough :hev used tl=e-
constants chosen to give a best fit with the data instea= cf the i anc K. :aIues
of Peters.

More extensive correlations were carried out ov Peters, with :he 7.5-ft-ziam
Lockheed model-rotor data further confirming the success af the dynamic :nflow
theory in representing the perturbation wake effects over a wije frequency range n
hover and forward flight (ref. ;35). Typical hover resu_:s presentec in gure :7.
are based on the measured data from references '30 and "v: they sncw :na: :ne
contribution of static inflow alone is adequate a: :ow frecuenc-es nut ac:ua .7
worsens the correlation at higher frequencies. A: higher frequer.ies. sre .
without any perturbation :nflow are better than :clucing s:ati4 =nc-. aCne.
Adding the apparent mass effects -o static inflo. .orrec:s :no :re= a: 7.gner
frequencies without apprecianly influencing :he resul:s a: .bw :requerc-es. 'Z7e
full jynamic inflow model thus proviaes a very sa::sfact:ry resul: :ver :he '--!
range of frequencies. Similar :'esu-ts are oservea in fzr-ara :l.zn: is sno n n
figure "8: here the static :nflow :s :ased cn :he emp:rI:a : i ncce..

:n addition :o the investigaI:ons 2asea cn :ne -. - : .odei--~zr :a:a.
.Hohenemser ana nis associ:es carr~ea ut ex:ens..e expe:'.aena. .
inflcw under AFDD support. Althougn :ne original -nten: .as to s:Uca V :r-.ae
flapping response to stocnas:tc excitation. it .as ei:zen: :na: :ne resu.:s -f :as:,
frecuency response tests .id not agree with :heory, as nc:ec previous.-. -onerenser
and Crews presented results in zoth hover and forlara :'::z: fr :*e :':a:n4
resconse to narmonic lace pizcn exc::at:cn of .a :-.-:: :orsona:
:wo-bladed model rotor ref. "37. ?-ogressing .n. reg:es:rg ycl:;:.zn r: . ta-
::cn .as accompisnec zy a .n:que var:aoie-frequenzy =::-cn.r.. .ecn...m ......
rca::ng system :nat avc.ced free-iay orco.ems fonven:icn. ".asru.::-o zors. ana oiLn-.:n -ecnanisms .n :ne srv:a::'. s:e7. . j e an-_n .



pertditted excitation of progressirg and regressing blade flapping over a wide
frequency range. Test data were obtained in hover and advance ratios up to 0.8, for
low to moderate values of collective pitch. A description of the two-bladed model
and initial test results were also reported by Hohenemser and Crews (ref. 138).

As discussed above, these data were compared with dynamic inflow theory in
reference 136. Hohenemser and Crews obtained additional data for a four-bladed
rotor model in hover ano forward flight, including hot-wire measurements of the
unsteady downwash in the hover condition (ref. 139). Since the solidity of the
four-bladed rotor was larger than that of the two-bladed rotor, the effects of
dynamic inflow were also larger. Further measurements of unsteady downwash were
obtained in reference 140.

Hohenemser and his associates also introduced the use of formal parameter
identification theory to determine the inflow gains and time-constants associated
with the dynamic inflow mode (refs. 141-147). These techniques were based on mea-
surements of transient response obtained from the smali-scale rotor model following
modifications to the cyclic pitch excitation system. The identified coefficients
for the. inflo w model were in very close agreement with momentum theory in hover.
Identification of forward flight inflow parameters was not as successful as in
hover, a result of the inability to excite collective modes.

Refined theory- The next significant refinement of dynamic inflow was the
development of a rigorous aerodynamic formulation for the steady-state forward
flight perturbation inflow model, the L-matrix. Although the empirical model was
accurate and quite satisfactory for the rotor in edgewise flow and low rotor lift,
it did not extend :o very lcw advance -atios and, therefore, could not transition
ontinuously :o hover. Furthermore, it lacked a rigorous theoretical basis and

ffered numerical singularities at certain advance ratios.

-or these reasons researchers began to pursue more satizsactory alternatives.
For a simplified aerodynamic formulation, such as dynamic inflow, an actuator disk
theory was considered an appropriate basis on which to develop a more rigorous
formulation. Following early NASA research (e.g., ref. 148) on actuator disk vortex
theory models. Ormiston represented the rotor loading as a series of azimuthal and
radial distributions of bound circulation (ref. 149). The Biot-Savart law was used
to determine induced inflow influence coefficients associated with each circulation
function. Wi:n a sufficient number of circulation f-unctions, the L-matrix could be
determined. -.is approach was not carried to completion and the solution to the
problem awaited the efforts of other investigators. Mangler had previously calcu-
lated the induced flow for an actuator disk representation of a rotor (ref. 11)).
He used the pocencial-flow solution discovered by Kinner, who reprezented the aero-
dynamLc loading of a circular disK by a complete series of radial ar.1 azimuthal
pressure fnc::cns. Joglekar and Loewy, extended the Mangler worK and evaluated the
induced inflow for additional pressure functions. (ref. 151).

Using Jogiekar and Loewy's work as a basis, Pitt and Peters successfully devel-
oped a rigorous. elegant, and practical L-tiatrix for dynamic inflow theory
(refs. 152-'5). They found that the Kinner potential functions would yield the
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matrix coefficients analytically in closed for. as a function of advance ratio and
*ldi sk angle of attack. These coefficients were applicable for any advance ratio and

at any disk angle of attack. Furthermore they extended the [inner theory to the
unsteady case and showed that under the assumption that velocities are mutually -in
phase, the exact potential-flow theory takes on a form identical to the dynamic-
inflow theory of equation (2). The apparent-mass terms depend on the spanwise lift
distribution but agree with those for an impermeable disk for the simplest distribu-
tions. The L-matrix is the closed-for. static inflow result and is insensitive to
the details of lift distribution. The Pitt-Peters dynamqic inflow theory is given by

128 0 0 di 1/2 0 15w11 sing d

75 6T 1+5mm 3nd
-164

45w 0 4 d s + V 0 T + sine 0 diL -dCL (4)

-16 d 15i .1 - sine d), IdCF
64 IV I +~ I inTm I + sina a H

45 - c 64 i sm 0 -aero

where V is given by equation (3) and a is the wake angle of attack at the rotor
disk. In hover (a = 900), the theory reduces identically to momentum theory and in
edgewise flow (d = 00) it takes on a structure very similar to that of the empirical
model. At intermediate disk angles, the L-matrix of equation (k) agrees with
results extracted from a prescribed-wake discrete vortex element analysis.

*a The Pitt-Peters dynamic inflow model was exensively compared with experimental
ata by Gaonkar and Peters (ref. 155) using the original data of references 129-131.,

including data not used in the previous correlations. Figure 19 shows typical
comparisons for stitic derivatives and although the Pitt-Peters does not agree quite
as well as t , ical model, it represents the major physical effects very
well. Figur,? t% is a typical correlation of unsteady data for rotor response in
forward fl;,

Effects sdynamic inflow on rotorcraft stability- As described above, dynamic
inflow is a relatively simple model cf the unsteady aerodynamics of the rotor wake
.that is suprisingly effective and accurate in representing the static and low-
frequency dynamic inflow response phenomena. Since the theory is expressed in a
time-domain differential-equation form it is a simple matter to incorporate it into
rotorcraft stability analyses. A number of these investigations have provided
further understanding of the nature of dynamic inflow in addition to demonstrating
improvements in prediction accuracy available by including dynamic inflow effects.
it may be noted zhat using such an approach constitutes an approximation for the
more rigorous finite-blade (as opposed to an actuator disk), thre-.dimensional
unsteady aerodynamic theories discussed in previous -sections. In effect, dynamic
inflow theory in conjunction with quasi-steady aerodynamics for the rotor blade
sirloads represents a low-frequency approximation to Loewy theor.
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S As noted, dynamic inflow theory is easily incorporated in rotorcraft dynamic
analysis. Ormiston studied the effect on rotor flap dynamics; flap damping was
greatly affected at low-rotor thrult and the effec varied significantly between the
regressing, collective, and progressing modes (ref. -156). The dynamic inflow model

introduces additional degrees of freedom, leading to inflow modes similar to aug-
mented states found in other finite-state unsteady aerodynamic theories. Peters and
Gaonkar found similar results for rotor flap-lag stability in forwaro flight
(ref. 157). Although dynamic inflow mainly influences the rotor-blade flap modes,

coupling between blade flap and lead-lag motions results in a secondary effect of
dynamic Inflow on lead-lag damping. It was found as a result that the rotor regres-
sing lead-lag mode was significantly influenced by dynamic inflow.

In another investigation, Bousman encountered significant discrepancies between
theory and small-scale model experimental data for damping of coupled rotor-body

roll and pitch-mode damping at low rotor thrust conditions (ref. 158). It was

postulated that these low measured damping levels were attributable to the vffects
of dynamic inflow for reasons similar to rotor-response results shown above.

Gaonkar et al. performed coupled rotor-body stability analyses including dynamic
inflow and confirmed the hypothesis (ref. 159). In addition, the effects of dynamic
inflow also accounted for anomalies in regressing lead-lag damping of ground- and
air-resonance modes noted in Bousman's results. Subsequently, Johnson
(refs. 160,161) presented predictions of coupled rotor-body frequencies with and
without dynamic inflow and compared them with Bousman's data as shown in fig-
ures 21(a) and 21(b).

For rotor speeds above 400 rpm, predictions of regressing inplane mode fre-
quency ( without dynamic inflow correlate well with data in figure 21(a). Corre-
lation of predicted body-roll-mode frequency (0) is fair but predictions of body

pitch (e) and flap regressing (BR ) modes are poor. However, when dynamic inflow is

included (fig. 21(b)), all of the calculated frequencies agree with the experimental

data. Of particular interest is the branch labeled X. The analysis identified

this as a coupled inflow and flap regressing mode dominated by the inflow degrees of
freedom. These important results show that in effect, the inflow model completely

changes :he character of the coupled rotor-body dynamics for this configuration.

Thus, one would not expect to be able to predict rotor-body dynamics without dynamic

inflow.

Several additional works on dynamic inflow might be noted. Gaonkar et al.

(ref. 162) and Nagabhushanam and Gaonkar ,ref. 163) investigated the properties of

extended dynamic inflow models, including a 5 x 5 L-matrix in place of the 3 x 3
L-matrix described above. The 5 x 5 L-matrix model included second-harmonic cyclic

inflow degrees of freedom and associated second-harmonic components of che rotor

airload distribution. It was found that if the number of inflow degrees of freedom

exceeded the number of blades in the rotor, inconsistent results for rotor dynamic
characteristics would be obtained. Later work indicated that the inconsistency was

due to an incorrect assumption regarding the radial distribution of lift for the

second-harmonic airload.
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More recent developments include the extension of dynamic inflow theory into a
higher frequency range. The original work of Pitt and Peters allowed for an arbi-
trary number of harmonics of induced flow, although only two were used. As shown by
Gaonkar and Peters in reference 164, it now appears that by including additional
harmonics, the theory of dynamic inflow will automatically include a three-
dimensional version of Loewy theory (for hover and forward flight) which implicitly
includes a near-wake approximation to the Theodorsen function. Correlations with
data showed that the new theory is superior to former unsteady theories for all
cases considered.

Significant progress has been made in development, validation, and application
of rotor dynamic inflow theory. It offers an efficient and effective tool for
expanding capabilities in analyzing rotorcraft aercelastic stability.

SOLUTION METHODS

This section addresses Army-NASA contributions to the development of methods
for solving rotorcraft aeroelastic stability equations. The following material
deals with automated equation derivation, solution of the dynamic equilibrium equa-
tions, and stability solutions using both Floquet theory and perturbation methods.

Automated Symbolic Manipulation

* A relatively recent development in rotorcraft aeroelastic stability is the
application of symbolic manipulation programs to derive rotorcraft equations of
motion. Because of the complexity of the equations of motion for even a moderately
sophisticated rotorcraft model, derivation of the equations by hand is a tedious,
time-consuming, and error-prone process. With this stimulus some very promising
work has been carried out to automate the derivation of rotorcraft equations of
motion. Nagabhushanam et al. described a self-contained FORTRAN IV symbolic proces-
sor, HESL (Helicopter Equations for Stability and Loads) that is capable of both
deriving and solving rotorcraft stability equations (ref. 165). In-contrast to
general-purpose manipulations such as FORMAC or MACSYMA, HESL is. specifically
designed for rotorcraft applications. This processor derives state equations for a
given ordering scheme, including energy expressions, generalized aerodynamic forces,
the Lagrangian formulation, linear perturbation equations, and the Multiblade coor-
dinate transformation. It also carries out the subsequent numerical computations to
determine system stability. A flowchart for these processes is shown in fig-
ure 22. This processor was used by Reddy (ref. 166),'Reddy and Warmbrodt
(ref. 167), and deddy (ref. 168) to treat the flap-lag-torsion stability of an
elastic blade, including dynamic inflow, in hover and forward flight. The numerical
results, compared with previously published results, indicated the powerful
capability represented by this approach. Typical results shown in figure 23 (from
refs. 166.293) for flap-lag-torsion stability of an elastic hingiless rotor blade in
hovee are compared with results obtained using the Hocges-Dowell equations
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(ref. 8). The lead-lag damping versus collective pitch shows small differences that
Reddy (ref. 166), was able to relate to terms in the structural and aerodynamic
operators of references 8 and 28.

A similar approach using MACSYMA was described by Crespo da Silva and Hodges,
who investigated computerized symbolic manipulation to develop the equations of

rotor-blade stability in forward flight and solvee them using a multiple time-scales

perturbation analysis (ref. 169). The derivation and the solution were both part of

a single operation involving MACSYMA. Also, the equations used by Crespo da Silva
and Hodges were derived' by symbolic manipulation, and portions of the computer
program used to solve the equations were output from MACSYMA (ref. 31).

Solution for Dynamic Equilibrium

In general, many rotorcraft aeroelastic stability problems are governed by
nonlinear equations. However, for many important cases, it is desirable to deter-
mine the stability characteristics from linear perturbation equations of motion
about a steady-state equilibrium solution of the nonlinear equations- In the hover

condition, the nonlinear equilibrium solution is generally constant and the linear
perturbation equations are constant-coefficient, ordinary differential equations.
In the forward flight condition, the nonlinear equilibrium solution is generally

perioaic in time (dynamic equilibrium) and the linear perturbation equations have

periodic coefficients. In either case, standard eigenanalysis or Floquet analysis
techniques are available to determine stability characteristics. The solution for

* the steady-state dynamic equilibrium solution is not as straightforward.

There are actually two tasks involved in the determination of the dynamic
equilibrium solution. First, even if the rotor collective and cyclic pitch controls

are known, there is the problem of finding the periodic solution to a set of nonlin-
ear differential equations with periodic coefficients. This is complicated by the

fact that the periodic solution may not be stable. The second problem is that the

blade controls are generally not known a priori. Instead, the analyst is supplied
with a set of trim constraint equations (e.g., six components of force and moment

equilibrium) that must be satisfied. Therefore, the second response problem is to
find the unknown controls (an inverse problem), as well as the periodic response

associated with the unknown controls such that the vehicle satisfies the trim con-
straints. Over the past '0 years, considerable government-funded work has been

directed at these important issues. This work has resulted in a number of solution

strategies for both the periodic solution (response) and the trim-,!ontrol solution.

The periodic response problem is reviewed first. For the hover case, this is a

static response which can be solved by Newton-Raphson or other nonlinear equation

solvers; for example, as in references 6 and 15. In forward flight, however, the

problem is dynamic 'response. The most fundamental solution strategy is that of
simple time-marching. Gaonkar et al. showed that Hammirg's modified predictor-
corrector is among the most cost-effective marching algorithms (ref. 170). However,

recent work by Panda and Chopra has also shown that finite elements in time can also

be competitive, provided they are correctly formulated in a bilinear-operator
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notation (ref. 171). The problem with time-marching of any kind, however, is that
it becomes cumbersome as damping decreases; and it is not feasible at all for
unstable systems. This is because time-marching will not converge to an unstable

equilibrium. Therefore, other methods have been developcd for the periodic-response

problem that can generally be divided into two categories.

The first category is that of transition-matrix methods. These rely on the

transition matrix, or an approximation to it, over one period of motion in order to

iterate on the periodic equilibrium. For linear problems, convergence is assured

provided there are no neutrally stable elgenvalues with integer-multiple frequen-

cies. For nonlinear problems, the system is assumed linear in each Iteration. Such

methods have proven very robust in terms of finding the solution. The method of

Schrage and Peters finds the eigenvalues and periodic eigenvectors of the approx-
imate transition matrix and uses modal expansion to determine the response

(ref. 172). The methods of Friedmann and Shamie (ref. 173), Friedmann and

Kottapalli (ref. 174), and Panda and Chopra (ref. 1V1) use the transition matrix in

a convolution integral to generate the linearized response in each iteration. A

similar method, called periodic shooting, used by O'Malley et al. in reference 175,

gives numerically identical results but without the need for convolution or expen-

sive eigenanalysis. A good review of transition-matrix methods is given by

Friedmann (ref. 176).

The second category of methods for the periodic-response problem is that of

harmonic balance techniques. These place the equations in the frequency domain
before solving and, as with transition-matrix methods. they assume a linear solution

* within each iteration (ref. 177). The robustness of these methods depends criti-
cally on the extent to which nonlinearities are linearized and placed on the left-

hand side of the equations. Strategies that include only inertial terms on the

left-hand side often fail; and strategies that linearize all terms are very robust.

Methods of trim solution will now be addressed. Trim strategies can generally
be divided into three categories. The first category is that of algebraic trim
equations which must be solved along with the response. In some cases, these are

from simplified equtions and can be colved in closed form (ref. 178). In other
cases, these equations come naturally from a full harmonic balance and must be

solved iteratively. A second category of solution strategies is Newton-Raphson
iteration. Here, no explicit equations are developed, but controls are adjusted

based on numerically determined improvements in the constraint conditions. This has

been the most widely used method for large, production analysis coder: O'Malley

et al. (ref. 175) and Johnson (ref. 94). However, the method is not robust and

often fails to converge. To combat this, analysis codes often apply the iteration

only :o a simplified set of rotor equations. Thus, the system is often not truly

trimmed. The third category of strategies is that of'autn-.pilot equations

(ref. 179). Here, a controller is designed to continuously monitor equilibrium
conditions and update the pilot controls accordingly. Gains and time-constants are

critical; and sometimes an adaptive controller is needed.

The government-sponsored research referenced above has not only developed the

techniques listed, but it has also applied them to a large class of rotor
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. problems. These applications have led to the conclusions listed above and have
identified natural matches between methods. For example, the automatic pilot is
ideally suited to time-marching techniques (ref. 179), and the 4ewton-Raphson tech-
nique for controls is ideally suited for combination with periodic shooting
(ref. 180). Furthermore, each of these two combinations has a set of problems
(depending on damping and order) for which it is optimal. Algebraic equilibrium
equations are naturally amenable to the harmonic-balance method, and these are
useful in problems of rotor-body coupling or when the aerodynamics are in the fre-
quency domain. Thus, the government-sponsored research in response and trim has
developed to the point that the new methods can be applied to practical problems.

Stability Analysis

In the hover condition for constant-coefficient equations of'iotion, stability
is normally determined from the characteristic roots obtained from standard eigen-
analysis techniques. Hodges presents a simplified algorithm for determining stabil-
ity when it is not necessary to evaluate all of the eigenvalues of a system of
linear equations (ref. 181). This method is computationally advantageous for cases
in which stability must be determined for a large number of system parameter values

as might be the case in constructing stability boundaries.

In theforward flight condition, and in hover with unsynuetric or two-bladed

rotors, the linear stability equations have periodic coefficients. Many investiga-. tors have pursued solutions ror this important problem in rotorcraft dynamics.
Although supported in part by the results of previous investigators, Peters and
Hohenemser carried out the first extensive application of multivariable Floquet
theory to problems of rotorcraft aeroelastic stability, primarily the flapping
stability of a single rigid blade in forward flight (ref. 182). Peters generated
the Floquet transition matrix by numerical integration of the equations of motion
for one period, and then determined the corresponding eigenvalues and eigenvec-
tors. Following publication of this work, many investigators began to apply Floquet
theory to rotorcraft aerelastic stability problems. Some of the subsequent work was
inta-ded to reduce the computational cost of generating the Floquet transition
matrix. Friedmann and Silverthorn applied an approximate method developed by Hsu, a
generalization of the rectangular ripple method, to substantially reduce the compu-
tational time for Floquet analysis (ref. 183). Hammond developed a refined version
of the numerical integration technique of Peters that required only a single-pass
integration of the equations for one period, rather than n integrations for an'
n-order system. (ref. 82). Both these methods are also described by Fried,ann et al.
(ref. 184). Further discussion of this subject is contained in Gaorkar et al.
(ref. 170) and Friedmann (ref. 176).

Perturbation Methods

Perturbation methods have been applied to a number of problems in rotorcraft
dynamics and are the object of continuing research. Use of perturbation methods has
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typically fallen into two categories. First there is the use of perturbation
methods in the space domain to approximate vibration frequencies, mode shapes, and
buckling behavior of rotating beams. The significance of this work is mainly in the,

results. Peters was able to derive approximate, closed-form solutions.to the free-
vibration frequencies and mode shapes for uncoupled flap, lag, and torsion of rotat-
ing, elastic cantilever blades (ref. 185). Hodges later extended this work to

include, blades- clamped off the axis of ritation (ref. !86). This work was also

extended by Peters and Hodges to obtain simple, closed-form expressions for the

inplane buckling of rotating beams (ref. 187).

The second category is the use of perturbation methods in the time-domain to

obtain information about the response and stability. Tong (ref. 188) and Friedmann

and Tong (ref. 189) used perturbation methods to study nonlinear flap-lag dynamics
of rigid and elastic blades in hover and forward flight. Johnson used perturbation

methods to study the flapping stability of rigid blades in forward flight
(refs. 190-193). Crespo da Silva and Hodges also investigated the application of

perturbation techniques to rotor-blade stability in forward flight (ref. 169). The
significance of this latter work is that it has the potential to bypass Floquet
theory, making use instead of analytical techniques such as the method of multiple

time-scales. Such methods tend to become intractable by traditional manual

approaches. However, when coupJled with powerful, general-purpose symbolic manipula-

tion programs such as MACSYMA it becomes a practical tool. This method is yet to be
fully developed for general rotor-blade analysis, however.

3. INVESTIGATIONS OF AEROELASTIC STABILITY CHARACTERISTICS

The previous section described the development of methods to analyze and pre-

dict the aeroelastic stability of a variety of rotorcraft configurations in various
operating conditions. Although methods in themselves tell little about rotorcraft

behavior and stability characteristics, they may be used to generate such inforlba-
tion. In this section, the results of Army-NASA investigations to study and iden-

tify such behavior and stability characteristics will be described. Such investiga-

tions may involve parametric analyses using the prediction methods described in the

previous section, experimental testing to explore rotorcraft stability characteris-
tics, or correlations of theoretical predictions and experimental data to check

underlying assumptions and validate the theory. All of thi5 is important because
advancing roeorcraft technology is a difricult process, and it requires a thorough

undorstanding of the fundamental physical behavior of rotorcraft aeroelastic stabil-
ity, whether obtained through analysis or experiment, and it requires a high level

of confidence in theoretical prediction capability that can only be achieved by

careful checking of theory against experimental measurements.

In t. sction the material is divided into somewhat arbitrary categories,

isolated b.ud'-flapping stability, isolated blade fhp-lag stablity, isolated blade
flap-lag-torsion stability, coupled rotor-body stability, bearinsless-rotor stabil-

ity, tilt-rotor aircraft stability, and an analysis correlation effort undertaken in
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connection with the ITR/FRR Project. In the section on flap-lag stability, material
on the development of analysis methods for rigid-hinged blades has been included
here instead of in section 2. In addition, the material on coupled rotor-body,
bearingless rotor, and tilt-rotor aircraft stability is arranged differently from
that in section 2.

FLAPPING STABILITY

The flapping stability of a rotor blade in forward flight is a basic problem of
rotorcraft dynamics because it is one of the simplest systems on which to represent
the effects of periodically varying aerodynamic damping and stiffness. Many inves-
tigators have addressed this problem, both to study methods of solving periodic-
coefficient differential equations and to understand the stability characteristics
of rotor blades described by such equations. Peters and HoheneMser eignificantly
advanced this work both in their introduction of Floquet theory to solve periodic-
coefficient equations and in clearly describing the complex forward flight behavior
of a rigid blade with a flapping hinge (ref. 182). These results illustrated the

existence of parameter regions (such as Lock number and advance ratio) where the
characteristic roots exhibit natural frequencies of half or integer multiples of
rotor speed, 0.5 or 1 per rev, that remain constant for an extended range of param-
eter values. This only occurs for constant-coefficient systems when the frequency. is zero. Peters and Hohenemser presented numerous plots of damping contours in the
Lock number-advance ratio plane illustrating the effects of pitch-flap coupling,
flap hinge spring stiffness, and hub-moment feedback. A typical result shows
regions of an 0.5 and 1 per rev natural frequency and the high advance ratio stabil-
ity boundary (fig. 24).

Yin and Hohenemser studied the same stability problem after transforming the
equations into multiblade coordinate form (refs. 194,195). They found that neglect-
ing the periodic terms in these equations, a constant-coefficient approximation
yielded results of acceptable accuracy for the low-frequency modes up to advance
ratios of about 0.8. Hohenemser and Yin extended this work to include the effects
of blade torsion and flap-bending flexibility on stability in forward flight
(ref. 196). The effect of blade flexibility, in comparison with a rigid hinged-
blaoe model, was shown to reduce flap-mode damping in forward flight, especially at
higher advance ratios.

Johnson applied the perturbation method of multiple time-scales to the rigid

flapping-blade problem in forward flight (refs. 190-193), confirming and clarifying
some details of the results of Peters and Hohenemser. He developed approximate
analytical expressions for the eigenvalues quite accurate for advance ratios up to
about 0.5. Johnson also gave a comprehensive and detailed revieu of the mnany ear-
lier studies of this problem before the work of Peters and Hohenemser (ref. 193).
He also presented a thorough discussion of the dynamic behavior of the flapping
blade in forward flight.
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Biggers also investigated the accuracy of constant-coefficient approximations
for this problem (ref. 197). Beginning with the forward-flight, blade-flappii.j
equations in hiultiblade coordinate form, he showed that constant-coefficient approx-
imation of thes equations was reasonably accurate for'moderate advance ratios up to
abcut 0.5. This was considerably better than vould be obtained for a constant-
coefficient approximation of the isolated blade-flapping equations written in the
rotating reference frame. Typical results of Biggers compare the variation of the
flap-mode frequency with advance ratio for a constant-coefficient approximation of
the multiblade flapping equations with exact Floquet analysis results (fig. 25).

Rogers studied blade-flapping stability in forward flight to examine dynamic
stall effects; this work was discussed earlier in section 2. Finally, Crespo da
Silva and Hodges used a computerized symbolic processor to perform a perturbation
analysiN of rigid, hinged, flapping-blade stability (ref. 169).

FLAP-LAG STABILITY

Analysis of rotor blade flap-lag degrees of freedom enables the researcher to
investigate the most basic characteristics of cantilever rotor blades, including
both hingeless and bearingless configurations. For articulated rotor blades, flap-
lag dynamics are generally. not important unless aeroelastic couplings are introduced
in the blade-pitch control system. Although flap-lag analyses of hingeless rotor
blades omit the important torsion effects and are, therefore, not generally of
practical use, they do permit the underlying structural, inertial, and aerodynamic
coupling of flap and lead-lag motions to be investigated with more clarity. Some of
the earliest work in this field was carried out by Young who drew attention to
nonlinear flap-lag coupling, generating some controversy in the process
(ref. 198). Hohenemser and Heaton then studied the same problem and concluded that
the effects of the nonlinearities could be adequately accounted for by linearizing
the flap-lag equations for small-perturbation motions (ref. 199). At this point
government researchers began to investigate these problems.

Hover Analytical Investigations

For investigations of flap-lag stability in Lhe hover conditions, results of
rigid-blade analyses are treated separately from results of elastic-blade analyses.

Rigid blade analyse:- In keeping with increased interest in hingeless rotors,
and a lack of information about such systems, Ormiston. and Hodges initiated a study
of Flap-lag stability to gain a general understanding of their basic aeroelastic
stability characteristics (ref. 3). They used the rigid-hinged-blade analysis of
1!ohenemser and Heaton (ref. 199) as a starting point. The flap-lag equations are
fundamentally nonlinear, and a proper formulation for stability analysis requires
linearization to derive small-perturbation equations of motion. Standard eigen-
analysis then yields the characteristic roots that define stability of the small-
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perturbation motions. Hohenemser and Heaton applied such a procedure, thereby

improving on Young's original flap-lag analysis. In reference 3, Ormiston and

H dges refined the analysis of Hohenemser and Heaton, correcting an error in the

linearization procedure of reference 199, and investigated the stability character-

istics of hingeless rotor blades for a wide range of parameters. These investiga-

tiotis used the simplified, rigid blade with discrete spring-restrained hinges to

represent the bending flexibility of a cantilever elastic blade as originally pro-

posed by Young (ref. 200). This approach simplified the equations of motion and

clarified the mechanisms that determined flap-lag stabiity.

Ormiston and Hodges extended this concept to provide a more complete represen-

tation of hingeless rotor blades, by introducing a double spring system to d.stin-

guish between the flexibility contained in the hub inboard of the pitch bearing and

the flexibility contained in the blade outboard of the pitch bearing (fig. 26(a)).

Thus the rigid-hinged blade model shown in figure 26(b) included two sets of flap

and lead hinge springs, one set fixed inboard of the pitch bearing and a second set

outboard of the pitch bearing and rotating with the blade as pitch angle changes.

The parameter R, genera.ly varying between 0 and 1, defined the hub-to-blade distri-

bution of flexibility. When all of the bending flexibility is located in the hub

and none in the blade, there is no structural flap-lag coupling and R = 0. When the

flexibility is in the blade and not in the hub, R = 1, and the structural flap-lag

coupling is roughly proportional to blade pitch angle. Combinations of hub and

* blade flexibility are represented by intermediate values of R according to a simple

formula. Curtiss has also proposed additional versions of this hub and blade hinge

spring model (ref. 201).

It should also be noted that for the rigid-blade model, the sequence of rota-

tions of the rigid blade is defined by the chosen arrangement of physical hinges; in

eference 3, a lag-flap sequence was chosen. This means that the flap hinge is

radially outboard of the lead-lag hinge and moves with the blade during lead-lag

motion. The kinematics of the flap-lag hinge sequence are slightly different and

lead to small differences in the ae.oelastic stability characteristics comnpared

with the lag-flap hinge sequence, as will be addressed below. The effect of hinge

sequence is much more pronounced when a discrete hinge is also included to represent

torsion of an elastic blade.

The basic flap-lag stability characteristics of the rigid b:ade in hover were

investigated in reference 3 and are illustrated in figure 27. For rotor blades

having a flap hinge spring (p > 1.0). a flap-lag instability can occur when the

lead-lag natural frequency is close to the flap frequency and when the flap fre-

quency is near (4/3) /2 . The nonlinear inertial and aerodynamic moments produce

flap-lag coupling terms in the linear.zed perturbation equations that vary in pro-

portion to blade-pitch angle. Thus the regions of instability in figure 27 expand
as blade pitch increases. The simplified flap-lag equations were used by Ormiston

and Hodges to develop several closed-form expressijons to describe flap-lag stability

characte"istics and stability boundaries.

The results of Ormiston and Hodges showed the strong influence of flap-lag
* elastic coupling; for example, as the structural coupling parameter R increases.
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the region of flap-lag stability in figure 27 shifts to higher lead-lag frequencies
until it ceases to exist for practical configurationn. Other results delineated the

differences between vtiff- and soft-inplane blade configurations (fig. 28). Soft-

inplane configurations are generally stable, independent of structural flap-lag

coupling, whereas stiff-inplane configurations typically exhibit flap-lag instabil-

ity at some intermediate level of flap-lag structural coupling.

Flap-lag instabilities described are typically relatively weak; a small amount

of structural damping is often sufficient to stabilize the blade. Blade-pitch
couplings, however, may cause very large changes in flap-lag stability. OrmistOn
and Hodges included the effects of kinematic pitch-lag coupling with results shown
in figure 29. For soft-inplane configurations, positive pitch-lag coupling (pitch
up with lead) is destabilizing fo all values of flap-lag structural coupling. The

behavior of the stiff-inplane configuration is considerably more complex; depending
on the flap-lag structural coupling, both positive and negative pitch-lag coupling

may be destabilizing. Reference 3 also included blade precone, aiid it was found

that although precone could be either stabilizing or destabilizing, its effect was
not large for torsionally rigid blades. Ormiston attempted to identify aeroelastic
couplings that would augment lead-lag damping to help control coupled rotor-body

instabilities such as air and ground resonance (ref. 202). A combination pitch-lag
and flap-lag elastic coupling was most effective in increasing the damping of the
isolated blade at zero pitch.

Peters used the flap-lag equations of Ormiston and Hodges to derive approximate
but useful closed-form analytical expressions for the lead-lag damping. as a -function
of the various configuration parameters (ref. 203). He was also able to show that

minimum stability occurs when the blade-tip motion moves along a straight line
bisecting the blade chord and the direction of mean airflow velocity, the axis of
minimum damping.

The rigid-blade flap-lag results of Ormiston and Hodges served to identify many
of the basic characteristics of hingeless-rotor-blade aeroelastic stability, the

nature of destabilizing aerodynamic and inertial flr -lag coupling, the important

role of flap-lag structural coupling, the essent a1 .'ferences between soft- and

stiff-inplane configurations, and how the importpnt effects of pitch-lag coupling
depend on flap-lag structural coupling and lead-lag natural frequency. Much of this
behavior has been reflected in numerous subsequent works, that:.have included blade
elastic bending, torsion, forward flight aerolynamics, and rotor-oody coupling.

As noted above, when a continuous elastic blade is modeled in an approximate
way by using a spring-hinged rigid blade, the order of rotations about the discrete
flap and lead-lag hinges will influence t - geometric orientation of the blade in
space. The influence of the flap and leaG-lag hinge sequence on the stability of
the system was investigated by Kaza and Kvaternik who compared the results obtained
for the flap-lag sequence with results (fig. 27) obtained with the lag-flap sequence
(ref. 204). The change in hinge sequence introducs a small effective pitch-lag
coupling that alters the stability boundaries for low flap stiffness configurations
as shown in figure 30.
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As originally formulated by Young the rotor-blade flap-lag equations are non-
linear (ref. 198). However, it has been shown that the nonlinear aerodynamic and
inertial terms" are relatively weak and that the linearized solutions discussed above
are usually satisfactory. Tong ctudied nonlinear flap-lag stability of the hinged
rigid blade in references 188 and 205 and determined the regions of linear
instability that would produce stable or unstable limit cycles, as shown in tfig-
ure 3T. He was also able to estimate limit cycle amplitudes of stable limit, cycles
usi g , erturbation methods.

Elastic blade analyses- In addition to studying the flap-lag stability of the
simplified rigid, pring-hinged representation of the elastic cantilever blade,
Ormiston and Hodges also treated a uniform elastic blade, using a modal analysis
method, and showed that with proper treatment of nonlinear aerodynamic and inertial
coupling in the elastic blade equations, the two representations exhibit very simi-
lar behavior (ref. 3). Additional results were rep-ted in reference 4.

Other investigators also studied the flap-lag suability of elastic blades in
hover. In reference 5, Friedmann developed and solved the elastic-blade flap-lag
equations, achieving results similar to those in reference 4, although flap-lag
structural coupling was not included. In references 206 and 207, Frieamann examined
the effects of mode shape on flap-lag stability and showed that the rigid blade with
appropriate hinge offset would agree closely with elastic blade stability bound-
aries, as shown in figure 32. In references 206 and 208 Friedmann found that the
effects of precone had a strong effect on flap-lag stability, although this was
later found to be due to an extraneous term in the equations (ref. 209). Friedmann
and Tong (ref. 189) also studied the nonlinear flap-lag stability of an elastic
blade, using perturbation methods, again identifying regions where linear instabili-
ties result in stable limit cycles; White also studied flap-lag stability of elastic
blades in hover, using a collocation method of solution (ref. 210). His results,
including the effects of flap-lag structural coupling, correspond to those in refer-
ence 4.

Further investigations of elastic blade flap-lag stability were carried out by
Straub and Friedmann, using the finite-element method (refs. 62,64). Typical
results in figure 33 show a comparison of flap-lag stability boundaries for the
finite-element method, and a conventional modal method for a uniform elastic blade
in hover. These results show the basic effect that flap-lag structural coupling
shifts the region of flap-lag instability to increasingly stiff-inplane
configurations as R increases from 0 to 1. Reddy compared elastic and rigid-blade
models for flap-lag stability and also included the effects of dyn ,mic inflow
(refs. 166,168).

Effects of unsteady aerodyni'mics- Only limited investigation of the effects of
unsteady aerodynamics on flap-lag stability have been carried out. Since flap-lag
instability occurs at a low freqviency, unsteady aerodynamics has not been considered
important. Kunz (ref. 211) used Theodorsan and Loewy unste ;y aerodynamic theories
to calculate flap-lag stability of the rigid, spring-restr:ined hinged-blade model
of a four-bladed rotor and showed moderatel-y large effects, especially with Loewy
theory, at larger blade-pitch angles, as shown in figure 34. More recently.



Dinyavari and Friedmann used a finite-state representation of Greenberg's unsteady
aerodynamic theory to calculate flap-lag stability of the rigid-hinged blade model
(ref. 113). Results showrr in figure 35 indicate a moderate effect, roughly consis-
tent with results of Kunz using Theodorsen unsteady aerodynamics.

Forward Flight Analytical Investigations

Early work on flap-lag "stability of hingeless rotor blades in forward flight
included the original work of Young (ref. 198). Tong and Friedmann also studied
nonlinear flap-lag stability in hover and forward flight using perturbation tech-
niques (refs. 188,189,207,208). In reference 189 they concluded that for moderate
advance ratios the periodic coefficients in forward fligh: would not have a large
effect on flap-lag stability unless the lead-lag frequency is near 0.5 or 1.0 per
rev.

The analysis of flap-lag stability in forward flight only received serious
attention after the utility of Floquet theory had been wizely recognized. This
afforded a practical means of dealing with linear periodic-coefficient equations of
motion. However, the nonlinear properties of the flap-lag equaticns with reverse

flow introduced some additional problems such as determining a periodic s:eady-s:a:e
solution, satisfying the trim condition of :he rotor, and :ocaining !inear:zed
equations. Early investigations of flap-lag stability in forward flight tere con-
ducted by Friedmann and Silverthorn, using an eiastic-olace model and a mccal sobi-
tion method (refs. 212-214). An approximate method was used to treat the reversed-
flow region and a simplified trim procedure was usea. oases on zhe hover trim soiu-
tion. Nevertheless, stability results were sensitive to several system parameters.
including reversed flow, mode shapes, and flap-lag structural coupling. Typca:
results shown in figure 36 illustrate the effect of reverse flow cn iead-lag
damping.

An extensive investigation of hingeless rc:or Diace stap-Xig szaoilizy
forward flight was zcncucted by ?eters in (ref. 215). -his study .as oasec :n :ne
hinged. rigid-blade model having reverse flow and including contrizuzions :o :ne
neriodic coefficients arising from the steady-state ziaoe resnonse arn c'ic. :,.n
associated wizh specifiz forward flignt trim onoiticns. F.-ure 37 illustrates :ne
..pcrtance of different -rim conditions on :he variation if :ead-:ag :amp±z .4:

advance ratio. Figure 35 illuscrates one of :he nusua. zrzzert:es o:er:-'' "
ce.ficienc systems. Fr configuracions 4i:n :eaa-:ag nat .ral frecuencles :osl :o

1 or 0.5 per rev. ;nstaoilities may occur that exnibi: :he .nreger :r nalf-.n:e4er
frequencies characteristic of D "erodic-coefflcient -.or t.e flan-ag =r::-
lem, these regions of parametric instaDility are qut:e restr:c:ea. tner ozn:'.tgra-
tions exhibit "Conventicnai" instabilities; that :s. :ne fre4enc:es -y :ay.e on
value.

Figure 39 sumrar:zes the effects o" fzao-g structura. oue:z on :'c:.ar=

flight fao-lag staoiiity and. as Ziscussed previous: y. tine 3 ff- .":ane ::n:" -_ra-
in is -ore sens:tive :o :hese e.'ecs :n. n :ne.

results illustrate :ne :asic :ap->a4 stai:i.:v ena,:or x. oof:- :_ st.a:.-...



rotor blades in forward flight. Peters also presented results showing the effects
of pitch-flap and pitch-lag kinematic couplings on stability.

is Kaza and Kvaternik (ref. 204) studied flap-lag stability of the rigid-hinged
blade in forward flight, including approximating the periodic-coefficient equations
with the constant-coefficient set obtained by transforming the blade equations in
the rotating system to multiblade coordinate equations in the fixed system, and
dropping periodic-coefficient terms, as Biggers did in reference 197 and as is shown
in figure 25. The results, shown in figure 40 for the same case considered by
Peters (fig. 39), illustrate that the collective and regressing lead-lag modes from
the constant-coefficient equations are quite adequate up to relatively high advance
ratios. A similar study was carried out by Gaonkar and Peters (ref. 216). Gaonkar

and Peters investigated the effects of dynamic inflow on hinged-rigid blade flap-lag

stability in forward flight (ref. 157). Lead-lag damping of stiff- and soft-inplane

configurations is illustrated in figure 41; depending on tlie particular configura-

tion parameters and the advance ratio, this unsteady aerodynamic effect may signifi-

cantly alter the stability.

In reference 173, Friedmann and Shamie revisited the elastic-blade flap-lag

stability problem in forward flight by considering more representative trim condi-

tions and including the periodic equilibrium solution in the linearized stability

equations. Their results, an example of which is shown in figure 42, confirmed the

findings of Peters about the sensitivity of stability to the details of the trim

solution. In a related work, Sham-e and Friedmann studied the problem of flap-lag

stability of a two-bladed teetering rotor in forward flight and compared the results

with those of a single isolated blade (ref. 217).

* Finite-element techniques have also been applied to the elastic-blade flap-lag

roblem in forward flight; typical results of Straub and Friedmann (refs. 63,64) are
shown in figure 43. Here, both the first and second lead-iag mode damping are

presented for a trimmed flight condition. Finally, Reddy and Warmbrodt calculated

flap-lag stability of an elastic blade in forward flight, using modal equations and

retaining two bending modes for each bending direction (ref. 218). The results,

shown in figure 44 for soft- and stiff-inplane blades with and without flap-lag

structural coupling, are for tri.med flight conditions and may be compared with
rigid-blade results in figure 39. These results were developed using a symbolic
processor to generate and solve the equations.

Flap-Lag Experiments in Hover and Forward Flight

A series of experiments using small-scale model rotors was conducted at the
Aerofightdynamics Directorate specifically to verify the results of analytical

vigestigaticns of the flap-lag stability of simplified rigid-hinged-blade models in
nover and forward flight. The flap-lag system does not represent a practical con-

figuration since typical rotor systems generally exhibit varying degrees of pitch

control and blade torsional flexioility. However, from a research point of view,
:he restricted flap-lag experiment greatly simplifies the process of correlating and
n:terp-eting analytical and exceri:enta: results. These experiments were designed
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to minimize as many sources of error and uncertainty as possible in order to provide
a clear test of the essential features of the flap-lag stability analysis. To this
end the blades were designed to be as as possible in bending and torsion.
Flexures placed at the blade root to re .. ent spring-restrained hinges were used to
eliminate, as much as possible, the nonlinear damping of hinges and bearings. The
hub-support system was designed to be sufficiently stiff to maintain a fixed hub,
isolated-blade condition.

The experimental technique consisted of initiating transientlead-lag motions
and measuring the decay rate to determine damping of the lead-lag mode. Figure 45
illustrates the hover test stand experimental apparatus and figure 46 the layout of
the hub flexures used to simulate flap and lead-lag hinges. The straight flexures
represented simple flap and lead-lag hinge springs; the skewed flexures provided, in
addition, kinematic pitch-flap and pitch-lag aeroelastic couplings. Both the
straight and skewed flexures could provide flap-lag structural coupling if they are
rotated in pitch with the blade. Hover tests were performed using a two-bladed
5.5-ft-diam rotor.

The typical results in figure 47 are from Ormiston and Bousman (refs. 117,219,
220); they show the variation of lead-lag damping with blade-pitch angle for two
different blade and hub configurations. The experimental results in figure 47(a)
confirm the destabilizing effects of flap-lag aerodynamic and inertial coupling
predicted by linear analysis. In addition, however, at high pitch angles the linear
analysis fails to predict the abrupt onset of instability. This was subsequently
determined to be due to airfoil stall that with suitable modification to the analy-
sis, could be reasonably well predicted. The results in figure 47(b) illustrate a
stiff-inplane configuration where the effects of stall were stabilizing. Another
experimental investigation was aimed at confirming the effectiveness of aeroelastic
couplings postulated by Ormiston (ref. 202) to enhance lead-lag damping of hingeless
rotor blades. Results of Bousman et al. (ref. 221) shown in figure 48 illustrate
how combined flap-lag structural coupling and pitch-lag coupling significantly
increase the rotor-blade lead-lag damping.

Another flap-lag stability experiment to investigate intermediate values of
flap-lag. structural coupling (R = 0.5), using blades with distributed bending flex-
ibility, was conducted by Curtiss and Putman at Princeton University (ref. 222),
using the apparatus and rotor hub descrioed above. Test results agveed well with
analysis, even though the rigid-hinged-olade analysis was used to model the elastic
blade.

Although a considerable amount of analytical research has been conducted on
forward flight flap-lag stability, relatively little experimental research has been
carried- out. An extensive experimental study of flap-lag stability in forward
flight was conducted at the Aerof'i.ghtdynamics Directorate and reported by Gaonkar
et al. (ref. 223). A 5.5-ft-diam three-bladed model rotor (fig. 49) similar to that-
used for hover experiments described above, was tested up to a moderately high
(0.55) advance ratio. In order to simplify operation and minimize nonlinear lead-
lag damping of pitch bearings. the model did not have a swashplate. Collective
pitch was changed manually and the rotor was trimmed to minimize steady-state blade
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flapping by varying the angle of attack of the rotor shaft. The resuts in fig-
ure 50 show the variation in lead-lag damping with advance ratio for several shaft
angles at 00 and 3 collective pitch. Agreement between data and theory is very
good except for the high shaft angle condition at 3 collective pitch. The inclu-
sion of airfoil stall improved the correlation for this case but degraded correla-
tion for the other cases. The detailed mechanisms of the stall influence are not

yet clear since the rotor is operating at moderate lift levels; however, large

angles of attack do exist for some regions of the rotor disc.

These experiments have done muzh to help our understanding of the dynamic
behavior of hingeless rotor blades and have provided a large body of high-quality
rotor-stability data that is useful for confirming theoretical predictions.

FLAP-LAG-TORSION STABILITY

Flap-lag-torsion stability of cantilever rotor blades represents one of the
important problems in rotorcraft aeroelastic stability. The effects of- torsion

generally tend to overpower the effects of coupled flap-lag structural dynamics.
When blade torsion is coupled with flap and lead-lag bending, practical problems in

aeroelastic stability of hingeless and bearingless rotor blades may be addressed.

Articulated rotor blades are not strongly influenced by the structural bending-

torsion coupling so important for cantilever rotor blades. Articulated rotor blades
generally experience flap bending-torsion flutter, a result of unsteady aerodynamics

and chordwise offsets of the airfoil mass, elastic, and aerodynamic centers (cf.
*ref. 224). Much of the research on cantilever blade flap-lag-torsion stability has

focused on the effects of nonlinear bending-torsion structural coupling, as will be

illustrated below. However, the chordwise aerodynamic offset couplings are also

important for cantilever rotor blades and they, too, will be addressed.

Hover Analytical Investigations

Before aeroelastic analysis of cantilever rotor blades that are fully elastic

in bending and torsion, a simpler problem was addressed by Friedmann and Tong

(ref. 5). They studied the stability of cantilever blades flexible in flap and

lead-lag bending and with rigid body root pitch motion restrained by pitch-link

flexibility. Results also presented in references 207 and 208 by Friedmann show the

strong effect of root pitch motion stability as shown in figure 51.

With the development by Hodges and Dowell (ref. 6,8) of the general nonlinear

equations applicable to ccmbined bending and torsion of elastic cantilever rotor

blades as described above, means were available to investigate the dynamic stability

characteristics of hingeless rotor blades. Many studies were devoted to analysis of

simple blades having radially uniform properties to help facilitate understanding of

the essential dynamic phenomena. Several early studies of this kind were carried

out by Hodges (ref. 6) and by Hodges and Ormiston (refs. 15.17,225). Typical basic
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results are shown in figure 52 (from ref. 225) where stability boundaries are.plotted as a function of the torsion natural frequency, a measure of torsional
rigidity.

These results illustrate how the introduction of blade-torsion flexibility
progressively alters the stability of the simpler flap-lag bending problem. It may
be seen that the effects of torsion are significant for some cnnfigurations even at
quite high torsion frequencies. Also presented are results of calculations that
include the bending-torsion structural coupling but omit torsion dynamics. In this
case the bending-torsion coupling generates effective pitch-lag and pitch-flap
aeroelastic couplings that control stability in a manner consistent with the results
of the simple rigid-hinged blade flap-lag analyses discussed above. Only for very
flexible blades does torsion dynamics significantly alter flap-lag-torsion stabil-
ity, because most of the effect of torsion flexibility is due'to structural
coupling.

Because the torsion structural coupling is so powerful, small amounts of blade
precone or droop, usually introduced to reduce steady blade stresses, can have a
lar-e effect on stability. Figure 53 illustrates the. influence of precone for
configurations with (R = 1.0) and without (R = 0) structural flap-lag coupling
(ref. 15). At low rotor thrust, the steady blade bending counteracting the built-in
precone produces a destabilizing pitch-lag coupling effect that causes a "precone
instability." As thrust increases and the blade equilibrium deflection coincides
with the precone orientation, the destabilizing coupling is removed, and stability
returns. At higher rotor thrust, other instabilities may occur, especially for
stiff-inplane configurations without flap-lag struccural coupling. The effects of
droop can be similar to precone. Droop is a built-in flap rotation of the blade
outboard of the pitch bearing, whereas for precone the pitch bearing axis has the
same built-in flap rotation as the blade and hence remains in alignment with it.
The similarity between the effects of precone and droop is determined by the ratio
of pitch-link stiffness to blade-torsional rigidity, f. Results in figure 54 (from
ref. 17) compare the effects of precone and droop on flap-lag-torsion stability
boundaries and show that depending on the value of f, precone and droop have identi-
cal or very different effects on the flap-lag-torsion stability boundaries.

In reference 226, Johnson presented results of a flap-lag-torsion stability
analysis for comparison with the results of reference 15 in order to validate the
analysis of reference 85. Good qualitative agreement was found.

Friedmann extended earlier results by investigating flap-lag-torsion stability
of blades with elastic torsion, using improved equations (ref. 19). These equations
retained root pitch motion and added flap-lag structural coupling and airfoil chord-
wise offsets. Results in figure 55 (from ref. 20) show the effect of aerodynamic

center offsets on stability and divergence boundaries. Friedmann also showed that

structural damping is moderately effective in eliminating the precone instability.

Reddy- investigated flap-lag-torsion stability of elastic blades in hover,
including the effects of dynamic inflow (refs. 166,168). His rejults were obtained
using computerized symbolic manipulation to derive and solve modal equations for
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* elastic blades. This permitted an easy means of examining the influence of small
terms in the equations of motion. Figure 56 illustrates the effects of dynamic
inflow on lead-lag damping at a moderate collective pitch angle.

To deal with practical rotor-blade configurations, especially bearingless-rotor

blades, more advanced structural analysis methods are needed and researchers have
begun to address this area. Chopra and Sivaneri (ref. 66,67) applied finite-element
methods to the elastic-blade flap-lag-torsion problem (fig. 57) and demonstrated
close aFreement with earlier modal-analysis results from reference 15. More
advanced work by Hong and Chopra treated hingeless rotor blades constructed of
composite materials (ref. 78). Using a finite-element method, they showed how
aeroelastic tailoring of the spar ply layup configuration could stabilize or desta-
bilize the lead-lag mode damping. A root locus plot shown in figure 58 illustrates
these results.

There have been other applications of flap-lag-torsion aeroelastic stability
analysis, including circulation control rotors by Chopra and Johnson (ref. 227) and
constant-lift and free-tip rotors by Chopra (ref. 228).

Effects of Unsteady Aerodynamics

The effect of unsteady aerodynamics on flap-lag-torsion stability in hover has
also been investigated. Pierce and White examined the effect of compressibility on
flap-pitch flutter owing to Theodorsen and Loewy aerodynamics (ref. 229). Friedmann

* and Yuan (ref. 110) studied the influence of different unsteady aerodynamic theories
on flap-lag-torsion stability, as shown in figure 59. These theories included
classical incompressible unsteady aerodynamic theory such as Theodorsen and Loewy,
cobpressible theories such as Possio, Jones, and Rao, in comparison with conven-
tional quasi-steady theory. In some cases the influence of unsteady aerodynamics is
small; in other cases it may be significant.

Flap-Lag-Torsion Hover Experiments

A number of experiments on flap-lag-torsion stability of hingeless rotors in
the hub fixed condition have been conducted in order to validate analysis of canti-
lever rotor-blade stability. Sharpe (ref. 230) tested a 5.5-ft-diam two-bladed
model rotor intended specifically to validate the theoretical analyses of
references 16 and 17. The cantilever blades were designed to be uniform in mass and
stiffness and with no chordwise offsets of aerodynamic or mass centers. Blade-root-
to-hub attachments were designed to provide variations in precone, droop, and pitch
restraint stiffness. An illustration of the model is given in figure 60. Typical
lead-lag damping measurements are shown together with theoretical predictions in
figure 61. The comparisons w.ith theory reveal that the analysis is quite accurate
at low pitch angles, whereas there are significant differences at higher blade pitch
angles. These differences are attributed in part to airfoil stall effects magnified
by the low test Reynolds number. Figure 62 demonstrates that the variations of

- 55
_____ ____ _ -- *.



d amping with orecone and droop are accurately predicted for :o 20 where airfoil
stall effects are not present.

Another experimental investigation of flap-lag-torsion stability was conducted
in the NASA Ames 4C- by 80-Foot Wind Tuiinel with a full-scale, four-bladed BO-105
soft-inplane'hingeless rotor. Because of the size of the rotor test apparatus, the
rotor-blade stability results were considered representative of a fixed hub condi-
tion. Warmbrodt and Peterson compared measured regressing lead-lag damping against
the CAHRAD theory for varying numbers of elastic blade modes with and without

dynamic inflow (refs. 59,231-233). The results shown in figure 63 illustrate that
correlation is improved with the addition of additional modes and dynamic inflow.

Forward Flight Flap-Lag-Torsion Analysis

In the late 1960's, before development of strong interest in aeroelastic sta-
bility characteristics of hingeless rotor blades, an investigation of articulated-
rotor instability at high speeds was sponsored by the Aviation Applied Technology
Directorate. This study involved prediction and correlation with experimental data
of articulated-rotor I.n0ing-torsion flutter (ref. 234); stall flutter (ref. 235);
torsional divergence (ref. 236); and flapping and flap-lag stability (ref. 237).
The predictions were obtained from stability analyses based on the equations derived
by Arcidiacono in reference 2 which were also included as a part of the AATD-

sponsored investigation. The bending-torsion flutter analysis used a classic fixed-
wing approach; for the rotor in forward flight, a fixed azimuth approximation was

~. used, holding aerodynamic properties constant corresponding to the particular

azimuth being analyzed. The torsional divergence analysis was based on a similar
assumption. Results emphasized the importance of airfoil aerodynamic center chord-
wise offset from the cross-section center of mass. Subsequent experimental investi-
gations of Niebanck and Bain confirmed that the fixed azimuth assumption is very
conservative (ref. 238). The flap-lag analysis of articulated-rotor blades, based
on forced and transient response calculations, did not produce any unstable behavior

in forward flight

For the experimental investigation of reference 238, a 9-ft-diam, dynamically
scaled, articulated-rotor model with several unbalanced chordwise center of mass
positions was tested at speeds up to 300 knots and at advance ratios up to 1.0. A
variety of unstable blade responses were encountered, including stall flutter,
advancing-blade flutter, retreating-blade divergence, and flapping instability. The
experimental results were compared with the analyses described above.

With the availaoility of 71oquet theory and the increasing experience ootained

from fully coupled flap-lag-torsion stability analysis in hover, government-
sponsored researchers began to turn attention to the forward flight analysis of
cantilever rotor blades. These studies were marked by progressive refinements in
the analyses as the equations were improved and restrictive assumptions removed.
Nevertheless it must be noted that this is a problem of considerable complexity. It
involves determining :he nonlinear trim state of a system of many degrees of freedom
(it multiple modes for blade bending or torsion deflection are retained) in response
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to unsteady excitation, obtaining linearized. system equations, and performing a
Floquet analysis. Some early results of Friedaann and Reyna-Allende (ref. 21) are
shown in figure 64 for flap, lead-lag, and torsion-mode damping versus advance
ratio. More refined. results of Shamie and Friedmnn (ref. 24) were based on equa-
tions derived from reference 22; the results are shown in figure 65. Differences in

the results shown in figures 64 and 65 were attributed to the differences in the
equations used in the two analyses. In general, the results of these two studies
showed similar trends. Further investigation using multiple modes for bending and
torsion deflections and improved solution procedures was carried out by Friedmann
and Kottapalli in (ref. 174). Typical results for soft- and stiff-inplane configu-
rations for both propulsive and moment trim conditions are shown In figure 66.
These results again confirmed the general findings that stiff-inplane configurations

are less stable than soft-inplane blades.

Reddy and Warmbrodt (refs. 168,218) also studied the flap-lag-torsion problem
in forward flight and identified the effects of dynamic inflow and elastic coupling
for soft- and stiff-inplane cantilever rotor blades as shown in figures 67(a) and
67(b). These results are in good agreement with those in figure 66, even though the
blade parameters are not identical. The results of this investigation are unique in
that they provide a clear and relatively complete picture of the aeroelastic stabil-
ity behavior of hingeless rotor blades in forward flight. Furthermore, these

results have been compared with work of earlier investigators, allowing some judg-
ments to be made about the validity of the results when, as in the case of flap-lag-
torsion stability of hingeless rotor blades in forward flight, appropriate. experimental data are not available for correlation purposes.

COUPLED ROTOR-BODY STABILITY

An important class of rotorcraft stability problems arises from mechanical
coupling between the rotor-system degrees of freedom and motions of the fuselage.
This coupling gives rise to the classic ground resonance of articulated-rotor
systems studied extensively by Coleman and Feingold (ref. 79) and others beginning
in the early 1940's. With the emerging interest in hingeless*rotors in the 1960's,
mechanical instability began to receive renewed attention for configurations having

lead-lag natural frequencies below rotor speed (soft-inplane). In the case of
hingeless rotors, the strong rotor-body coupling generated by the cantilever blades
significantly increased the complexity of the mechanical instability and created the
potential for air resonance, as well as ground resonance. The work of Cardinale and
his co-workers on the XH-51A Matched Stiffness Rotor helicopter (ref. 81), and of
Lytwyn and Miao on the 0-05 (ref. 239) illustrate early efforts in aeromechanical
stability. For stiff-inplane configurations, mechanical instability is not of
practical concern; however the effects of rotor-body coupling may aggravate aero-
elastic instabilities arising from blade or control-system characteristics. During

the last 20 years, a significant amount of government-sponsored research on coupled
rotor-body stability has been carried out; including analytical investigations and
large- and small-scale experiments. This section will address coupled rotor-body
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stability problems of conventional articulated and hingelss rotor hsUiopters,
Rotor-body stability bearingless rotor and tilt rotor systems is discussed later in
separate sections.

Analytical Investigations in Hover and Forward Flight

Under AFDD sponsorship, Hohenemser and Yin investigated the stability and
response of coupled rotor-body systems with feedback controls in order to understand
fundamental rotor-stability characteristics and identify means to reduce gu3t
response in high-speed forward flight. Hohenemser and Yin studied the whirl
dynamics of a flapping rotor coupled to a body with pitch and roll angular freedom
and found that whirl instability could occur for some configurations at high advance
ratio (ref. 196). In reference 240 they studied feedback control systems designed
to improve response charadteristics and gust response of hingeless rotors operating
at high advance ratios without inducing aeroelastic instablities. Further studies
of this type were conducted in references 241 and 242. Finally, Hohenemser and Yin
investigated the stability of a flapping rotor on flexible supports using a finite-
element formulation (ref. 61). Results showed how higher flap-bending modes could
couple with support dynamics and influence stability of the coupled rotor-body
system.

One important problem in the area of classic mechanical instability is the case

of a rotor with one lag-damper inoperative. This asymmetric rotor problem gives
* rise to periodic coefficients in the equations of motion, even in the hover condi-

tion. Hammond treated this problem using both Floquet theory eigenanalysis and

direct numerical integration (ref. 82). Typical results are shown in figure 68;
they illustrate how the modal dynamic behavior increases in complexity and how the
system can be destabilized as a result of losing one damper.

As noted above, hingeless rotorcraft mechanical instability is more complex
than classical ground resonance. Early analyses of hingeless-rotor air and ground
resonance were carried out in support of full-scale rotorcraft development programs;

for example, the B0-105, XH-51, WG-13, and YUH-61A. However, there did not exist a
clear understanding of the role of hingeless-rotor configuration parameters in
determining aeromechanical stability. Aerodynamic damping acting through the hinge-

less-rotor flapwise hub moments was thought to counter air and ground resonance.
The unsteady wake effects were not understood. Very little work had been done to
study blade aeroelastic couplings; consequently, designers had littlc information to
help make important design decisions.

In order to address these issues, government-sponsored analytical and experi-
mental research was undertaken by the Army and NASA to develop a better understand-
ing of this topic and thus help to design rotorcraft free of such instabilities.
Ormiston carried out an extensive parametric investigation of hingeless-rotorcraft

air and ground resonance using a simplified model consicting of a rigid-body fuse-
lage and rigid-spring-restrained blades with flap-lag degrees of freedom (refs. 86,
87,243). Initial results were presented in reference 243. Typical results are
shown in figures 69 and 70 (from ref. 86); they show the effects of rotor
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aerodynamics and collective pitch on grouind- and air-resonance stability boundaries
for a wide range of configurations. The results indicate that hingeless-rotor
aerodynamic damping is stabilizing for air resonance but that as flap stiffness
increases, stability decreases (contrary to what might be expected).

The effectiveness of aeroelastic couplings to alleviate air-resonance instabil-
ity was also investigated, as shown in figure 71. Although blade aeroelastic coupl-

ing can be very effective in Many cases, it is difficult to alleviate mechanical
instability over a wide range of operating conditions for a fixed set of conflgura-
tion paramaeters. The results of this study revealed that aeromechanical instability

of soft-inplane hingeless-rotor helicopters is indeed a very complex subject, even

for the simplified physical model employed in the analysis. In another study,

Ormiston explored in depth the detailed properties of the coupled rotor-body dynamic
modes and how they influenced air resonance behavior (ref. 87).

Other investigators have studied the effects of dynamic inflow on hingeless-

rotor air resonance. Since the aerodynamic damping resulting from cantilever blade-

flap stiffness exerts a powerful influence on hingeless rotor dynamics, it would be

expected that dynamic inflow might have a potentially significant effect on ai-

resonance stability. Gaonkar et al. (ref. 159) extended the aeromechanical stabil-
ity investigation of Ormiston to include dynamic inflow; a typical result is shown
in figure 72. In this example air resonance was stabilized; in other results the

opposite was shown to occur. Nagabhushanam and Gaonkar extended the rotor-body

* hover analysis to forward flight and studied the effects on stability of dynamic

inflow models and trim methods, for soft- and stiff-inplane configuratio..s

(ref. 163). A typical result in figure 73 shows how strongly the trim condition
influences coupled rotor-body stability in forward flight. In reference 244,
Johnson also analyzed the aeromechanical stability of a soft-inpiane helicoptcr in

forward flight, using the equations developed in reference 85. Another -pproach
receiving renewed attention is the use of feedback control to stabilize air reso-

nance instability. Straub and Warmbrodt showed promising results using a relatively

basic approach, with cyclic lag and body angular rate feedback to control cyclic

pitch (ref. 245).

Venkatesan and Friedmann also studied coupled rotor-body stability of a multi-

rotor hybrid airship (refs. 98,246).

Rotor-Body Experiments in Hover and Forward Flight

One of the first experimental investigations of rotor-body aeromechanical

stability was conducted by Burkham and Miao at Boeing Vertol, using a 1/14th-scale,

Froude-scaled model of the 80-105 helicopter (ref. 247). An important series of

experiments was conducted at the Aeroflightdynamics Directorate by Bousman

(refs. 158,248,249) to confirm analytical results obtained in reference 86 for

hingeless-v'otor aeromechanical stability. The resulting data, obtained for the

hover condition using a 5.5-ft-diam model, are noteworthy for both quantity and

quality and have been used in numerous aeroelastic correlations. Several rotor and

body configurations were :ested overa range of rotor speed and collective pitch for
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different fuselage restraints and blade aeroelastic couplings. Frequency and damp-
ing were obtained for all measurable fuselage and blade modes. As in precious AFDD
experiments, rigid-hinged blades with flap and lead-lag flexures were used. In
addition a simulated in-vacuum condition was tested, using non-airfoil shaped stub

blades.

Figure 74 shows the in-vacuum rotor configuration mounted on a motor-

transmicsion gimbal frame structure that represented a fuselage with pitch and roll
degrees of freedom. Frequency and damping results versus rotor speed for this model

are shown in figure 75 (from ref. 249). Comparison with Hodges' FLAIR analysis
(ref. 57) shcws excellent correlation for the frequencies of four rotor and body
mc.:es and excellent correlation for lead-lag damping of the regressing lead-lag
.1YJe. This would be expected for a clean mechanical model without aerodynamic

effects. These results confirmed that the physical model, configuration definition,

test, and data analysis procedures were sufficiently refined to produce very high

quality data.

The airfoil-blade rotor configuration, mounted on an improved fuselage frame
having flex pivots in place of ball-type gimbal bearings, is shown in figure 76. In

figure 77, a sampling of .regressing lead-lag mode damping results from reference 158

exhibits very low data scatter and agrees well with predictions of the FLAIR

theory. These results clearly confirmed trends predicted by earlier analyses for

the basic effects of rotor speed that reduce damping at body pitch and roll fre-. quency coalescences, the destabilizing effect of collective pitch, and the influence

of aeroelastic couplings where damping is dependent on configuration. Systematic

discrepancies between theiry and measured results for some configurations indicate

that not all phenomena are accurately accounted for; likely candidates were postu-

lated to be unsteady aerodynamics, and possibly, blade flexibility.

Bousman's experimental results also led to new insights about the role of

unsteady aerodynamics in low-frequency coupled rotor-body dynamics. The effects of

dynamic inflow on coupled rotor-body modal frequencies were discussed above in
section 2. The measured damping data also provided confirmatien of suspected

sources of discrepancies in body-pitch and roll-mode damping, ,s shown in figure 78
by calculations by Johnson with and without dynamic inflow (ref's. 160,161). The

effects of dynamic inflow on Lead-lag regressing mode damping are shown in fig-
ure 79, where dynamic inflow marginally improves the agreement between analysis and

data. Interestingly, Johnson's predicted lead-lag regressing-mode damping with

dynamic inflow does not agree with the data as well as Bousman's prediction without

dynamic inflow in reference 158, using Hodges's FLAIR analysis. This indicates that
the prediction of aeromechanical stability may be rather sensitive to simill details
of the analysis. Friedmann and Venkatesan also correlated analyses with Bousman's
data (refs. 250,251). They also confirmed the favorable effects of dynamic inflow
on the correlation, and furthermore, in reference 250, their predictions of regres-
sing lead-lag damping correlated well with data at high rotor-blade collective pitch
angles where correlation was rather poor for the FLAIR analyses.

Other coupled rotor-body exoeriments have been carried out; Yeager et al.

tested a hingeless-rotor researcn model in the Langley Transonics Dynamics Tunnel
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for hover and forward flight conditions (refs. 252,253). Good correlation was
achieved with predictions by the CAMRAD analysis.

BEARINGLESS-ROTOR STABILITY

The beaeingless-rotor configuration, a refinement of the basic hingeless rotor,

has been the subject of much development activity by the helicopter technical com-

munity and the focus of a significant amount of government research. The isolated

bearingless-rotor blade encompasses all of the basic flap-lag-torsion aeroelastic

stability characteristics of hingeless blades described above, as well as additional

complications of the flexbeam and pitch control mechanisms.. Because of the wide

variations in different bearingless rotor configurations and the more pronounced

effects of higher blade-bending modes, bearingless-rotor stability characteristics

can be more difficult to understand or to generalize than those for hingeless rotor
blades.

Since most of the applications have been soft-inplane configurations, many

bearingless-rotor investigations have also treated air and ground resonance and thus

included coupled rotor-body dynamics. It is, therefore, appropriate to survey both

isolated rotor blade as well as coupled rotor-body studies, as a single topic in. this section.

Bearingless-Rotor Stability Analysis

Bielawa carried out one of the first analytical investigations of bearingless-
rotor aeroelastic stability using the G400 analysis described above to evaluate the

stability of candidate full-scale bearingless rotors for application to the RSRA

aircraft. Hover stability results were presented in reference 56 for soft- and

stiff-inplane isolated (fixed hub) rotor-blade configurations having snubbed torque

tubes. Instabilities were evident at high collective pitch angles, and these were

aggravated by airfoil stall effect. The first three flap-bending modes, the first

two edgewise-bending modes, and the torsion mode were highly coupled and led to very

complex behavior.

Development of. FLAIR by Hodges (described earlier in section under Helicopter

Eauation) was initiated to support the full-scale Bearingless Main Rotor (BMR)

developed and flight tested on a B0-105 helicopter by Boeing Vertol under Army AATD

sponsorship. The BMR development program is described in more detail in a later

.ection. The simplified FLAIR analysis considered the blades to be rigid in bending

aid torsion, attached to a uniform stiffness flexbeam modeled by exact nonlinear

bending-torsion equations for a continuous flexible beam. The rotor vas attached to

a rigid-body fuselage having pitch and roll degrees of freedom. Quasi-steady aero-

dynamLc :heory 4as used for the hover condition only. The FLAIR analysis was used

by Hodges in reference '86 to identify the configuration parameters that would

maximize the air and ground resonance stability of the BMR configucation
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(ref. 58). The Boeing Vertol BMR configuration corresponds to Case II in fig-

ure 10. Parameters such as flexbeam and blade precone, droop, sweep, and flexbeam
pre-pitch were studied. Air resonance was easily stabilized over a reasonable rotor
speed range; however, ground resonance was more difficult. The FLAIR analysis was
also checked by Hodges (ref. 88) against model-scale BMR experimental measurements
of air and ground resonance stability reported in reference 254. Typical results
are shown in figure 80 for two different BMR configurations; there is generally good
agreement between FLAIR and the measured data.

Sivaneri and Chopra developed a finite-element, bearingless-rotor blade analy-

sis capable of modeling a twin flexbeam configuration (refs. 59,67). They compared
the accuracy of a simplified approach using a sinle flexbeam to represent a dual
flexbeam configuration, an approach that they found to be inaccurate in some cases.

Searingless-Rotor Experimental Investigations

Considerahle experience in testing bearingless rotors haA bern gained through

government research and development activities, including development of prototype
systems. Only a part of this has been focused to meet specific research objectives;

therefore, there is a need for continuous experimental investigations in this area.

A moderate amount of experimental tes.ing data has been accumulated through

development testing of prototype rotorcraft systems. These developments are dis-

cussed in section 4. The Boeing Vertol Bearingless Main Rotor (BMR) program was

particularly noteworthy for the amount of test data obtainied (refs. 89,90). Exten-

sive test data for the 1/5.86-Froude-scaled BMR model was reported by Chen et al.

(ref. 254). An interesting correlation of model data, full-scale flight-test data,

the FLAIR analysis, and the Boeing Vertol C-45 rigid-blade analysis for a hover air

resonance condition of the BO-105/BMR is shown in figure 81. Following the BMR

flight-test program, excensive experimental testing of the full-scale SMR rotor was

conducted in the 40- by 80-Foot Wind Tunel as described in section 4. Typical

experimental results from reference 255 are shown in figure 82 together with predic-

tions from a Boeing Vertol code. The rotor apparatus used for the wind-tunnel

testing provided a nearly hub-fixed condition for the rotor, therefore, the results

rcpresent isolated rotor-olade stability.

A series of experimental investigations using a small-scale bearingless-.rotor

model was carried out at AFDD by Dawson with the specific intent of *erifying the

FLAIR analysis and of investigating bearingless-rotor stability characteristics in

general (ref. 216). This model was designed to accommodate variations of a wide

variety of flexbeam and control-system geometric parameters to permit testing a wide

variety of bear ingless-rotor types. These features are illustrated in the exploded

view of the hub, f1exbeam, pitch control torque tube, and pitch links (fig. 83).

The model was tested in both two- and three-bladed versions. Typical results from

reference 256 for lead-lag. damping versus blade-pitch angle are shown in figure 84

at two different rotor speeds and for two different pitch-control configurations.

The correlation with :he FLAIR analysis is reasonably good; however, irstances of

flutter involvtng unsteady aerodynamics not treated by FLAIR were also
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encountered. Further experimental investigation by Bousman and Dawson of the
flutter results identified several distinct types of flutter that may be experienced
by bearingless rotors (ref. 257).

Finally, a considerable amount of small-scale experimental data has been
obtained by Weller and Peterson for the air resonance characteristics of an advanced
bearingless rotor in hover and forward, flight (refs. 258-260). These results are
more fully described in section 4. In addition, small-scale experimental studies in
connection with the ITR/FRR Project were conducted in hover and Lorward flight, as
noted in section 4. The Boeing Vertol ITR bearingless-rotor model testing was
reported by Mychalowycz (ref. 261).

TILT-ROTOR AIRCRAFT STABILITY

In the early 1960's, considerable attention was given to the problem of rotor-
pylon stability of tilt-rotor aircraft. Before the emergence of the tilt-rotor,
research had been performed in efforts to understand the problem of classical pro-
peller whirl-flutter instability where nacelle pitch and yaw motions are coupled
through gyroscopic effects of a spinning rigid propeller. Reed and Bland (ref. 262)
and Houbolt and Reed (ref. 263) investigated both classical propeller whirl flutter
and 3tatic divergence, using rigid-rotor models. A comprehenseive review of propel-
ler wnirl flutter by Reed can be found in reference 264.

Actual tilting proprotor stability analyses were subsequently found to be
considerably more complicated than classical propeller whirl flutter. The impor-
tance of rotor flapping for tilting proprotor configurations was first investigated
by Young and Lytwyn (ref. 261). Using a representation including yaw and pitch
motion of a rigid nacelle and with rigid flapping for each blade, it was shown that
a forward whirl instability was possible but would be seJf-limiting because of
nonlinear aerodynamics. Most importantly, it vas found that increased blade flexi-
bility reduced the pitch and yaw stiffness requirements for proprotor whirl flutter,
thereby allowing weight reductions for the pylon mounting in tilt-rotor aircraft.

During development and testing of the Army Bell XV-3 tilt-rotor aircraft,
further investigations of proprotor whirl flutter were carried out by Hall
(ref. 26o) and Edenborough (ref. 267),; they provided additional understanding of
rotor-pylon dynamics. Two potentially unstable modes were identified for an
XV-3-type tilt-rotor aircraft: a pylon mode at a frequency near the natural fre-
quency of the pylon, with little rotor flapping, requiring little damping for sta-
bilization; and a rotor mode at much lower frequency, with large rotor flapping,
requiring substantial damping for stabilization.

Coupled Rotor, Pylon, and Rigid-Body Dynamics

:n :he early '970's. following initiation of tte XV-15 program. the government
-ncreased e:for:s -o improve analysis capabilit.es'and ,icerstarding of t.Ic-
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proprotor aircraft stability. Up to this -time, no dynamic an~alysis of a- full rotor-
pylon-wing-aiirframS system had not been- undertaklen. Kvaternic dev.3Lop~d--the analy-
sis of reference 99 to better understand -wing-rotor dynamics Using a linear analysis
of an idealized -proprotor in cruise-mode fiight with rigid, spring-restrained- flap-
ping blddes. -This- analysis Was Used to predict the aeroelastic stability- of a
small-scale model of the Bell Model 266 tested in the Langley Transonic- Dynamics
Tunnel. Figure- 85 shows a comparison at experimental and analyti I. results for two
configurations- of the model, with and without aerodynamics. The analysis of Thefer-
ence 99,- together- with an extensive -small-scale-model test program conduc ted in the
Langley Transonic Dynamics Tunnel with Grumman -(ref. 100). was used ay Kvaterni and
Kohn to investigate the applicability of a simple mathematical model to-predict'
whirl flutter -for both backward and forward:-whirl modes. 'he model is shown in
figure 86. The study showed the ability -to-predict dynamic stability fram- such C
simple mathematical model using linear aerodynamics fo'r both I.ypes of rotor-pylor

=instabilities-.- Additional descriptions of-these invest iga: ions are-reported- in
references-268 and 269.

In support of -the development testing- of -the RU-IS ti::-rotor aircraft, .7ohnson
used a sophisticated analysis far predicting ti-lt-rotor aernelastic stability benav-
jar. The ini'tial analysis (ref. 101-) treated- rotor-blade f'aD and lag-elastic.
bending and wing beam bending, chord bending4 and torsion, and was used- :o- study the
sensiti7ity of analytical predictions :o various elements te he theoretical
model. This analy.;is was also used for comparisons with results -of two -ull-scaie
semispan prop-otor-wing models tested- in- the -NASA .4tes 40- by 80-Foot Wind- Tun-
nel. The- Boeing Vertol soft-inpiane proprotor -configuration tested--in -%he -wino
tunnel is- shown- in f igure 87; measured- results -for camnping -f the wing vertical
bending mode for a Boeing Vertol soft-inplane configuration are compared-with- analy-
tical predict-ions in f igi-re 88. Johnson a-lso di-scussed these result s :
reference 270-.

Johnson further investigated the sensitivity cf tilt-riprotor- stability- to
details of., the- analytical model (ref. I7)-. That invescigat.ion usea- ar. extended
version of :he- ecuatlons of reference :01, including coupli,-; of rotor-Olade flac-
iag bending dieflections. blade torsion. addit-ional bi7ade-benzing m.odes. -rotor rota-
tional speed oprturbat ions, and wing aerodynamic- f:roes. 7y::oiai resut:s- (fig. _39)
indicate the Ioortance of blade-aitch and- blade -'ag notion -.n wing Zenaing-mR.ode
damping. :n rerece 103 Johnson investigated te influence of the rotocr shaft
(rotational' Jegree of freedom. When rotor shaat arnzu.ar r-:aticn 'a .- icked ':n
-he wing -.-p ro".acon kwh~ch accompan ies- .4ing ..p vjer" ical :eflect ions,.- rotor
aerodyramie damo'"" no longer damps wing vertica± c,:ding not.ion, resu-.i"-g in- a
pronounce,- jestaoi4 Iing effect. He also showed t .at '.nterc:irnect srnaf. zynamics
were Irnoortant in coupled rotor-wing an: isyr~etr;c- j~., as'snown by the- typicali
results .n 'i--re 40. Jonrson aiso investigated the :nioortarae of pltc.i-'aw, courO.-
ing on or:.orotor staoi:y :e:27) "ocrna b.-n blaze -recone *'or
relieving nL-gh steady blade-flap tending -oments :n nover. -owever. :n :he~
mode, with 'e-du-Cea ron arc signif; cantlv Aduced tnr- st. the ilastic zending
decreases the- o)_a,_e .,cr.ng. The.resu-:Ing- negacive :::cn-laz _n-_lin "en" econies
detaoi:ng h- .oL. ng -,an Le reLuced- ts-g nereasea :~ri C
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stiffness or by introducing blade droop. This work also investigated the effects of
lift divergence at high speed where compressibility effects reduce aeroelastic
tability, as shown in figure 91.

In preliminary studies for the XV-15 aircraft, a soft-inplane proprotor was
investigated analytically and experimentally by Alexander et al. (ref. 273). Unlike
a stiff-inplane rotor system, a soft-inplane system can experience air resonance at
low speed when the regressing lead-lag motion coalesces with the wing vertical
bending mode. Once again, the rotor rotation degree of freedom is very important;
otherwise the wing mode is incorrectly predicted to be highly damped. The results
of this study showed excellent damping predictions compared with full-scale
40- by 80-Foot Wind Tunnel data for the full-scale semispan Boeing Vertol rotor-
nacelle-wing model.

Subsequent to the XV-15 wind-tunnel and flight-test program, Johnson (ref. 104)
assessed the dapability to predict performance, loads, and stability of the XV-15
aircraft, using the CAMRAD comprehensive analysis of reference 94. The conclusions
from that study for tilting propeotor dynamics recognize the established confidence
in predicting whirl flutter for the configurations that have been built and
tested. However, new configurations with expanded flight capabilities will require
new treatment and analyses o overcome current shortcomings.

A good indication of the capabilities for predicting proprotor whirl stability
is provided in figure 92, which shows test results obtained for a V-22 Osprey model
tested in the NASA Langley Transonic Dynamics Tunnel (refs. 274-276). Measured
damping data for several test configurations are compared with predictions by CAM-
RAD. PASTA. and a Bell analysis DYN4. Although some preliminary adjustment in the

put parameters of the analyses is usually necessary, the agreemrent between test
d analysis is reasonably good.

METHODOLOGY ASSESSMENT

it is a given that theoretical prediction methods for rotorcraft aeroelastic
stability require validation of some sort to be accepted as trustworthy. There are
.any ways of doing this. Three typical approaches are to check r:e predictions with
(') a known qiosed-form analytical solution to a theoretical problem. (2) results
:rcm other validated programs, and (3) experimental data.

A useful way to validate individual computer programs and at the same time
assess the analytical state of the art in a given technical field is to analyze the
same proolem with several programs and compare the results. -his nas value for
hypotheticai problems (comparing only computer results), but it is obviously more
iesirable to analyze a problem for which experimental zata are also available. Such
in exerctse is larticularly useful in the rotorcraft cynamics tecnnical community,
zspecially gven the many indecendent computer programs used within the industry.
"ali'ation eor these codes is often minimal or limited to a narrow range of vehicle
or rotor conf:gurations. Taken collectively, the comparisons serve to calibrate the
.. ecictlon methods for specific applications and identify areas wrere additional
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research effort might have a high payoff. The results often provide the clues or
information useful in upgrading individual codes.

A methodology assessment of this type was conducted by the Aeroflightdynamics

Directorate in connection with the ITR/FRR Project in June 1983 (ref. 277). Aero-

elastic stability oredictions were compared with a variety of carefully selected

experimental data encompassing simple and complex rotor blades; isolated rotor and

coupled rotor-body configurations; and small- and large-scale rotors operating in

hover, wind-tunnel, and flight-test conditions. A total of eight different predic-

tion codes from industry, universities, and government laboratories were included in

the comparisons. The results were very useful, and a few are included herein to

illustrate some of what was learned.

The first case is for the elastic hingeless-rotor-blade model discussed in

section 3. Data for lead-lag damping in .the hover condition (ref. 230) are used to

compare with predictions for two cases, one without built-in blade droop and the

other with -50 droop. Predicted results without droop (fig. 93(a)) are relatively

good for most of the analyses except at higher pitch angles where airfoil stall
occurs. The situation changes completely for the droop configuration, shown in

figure 93(b). Now the correlation is poor and there is a wide spread among the

predictions. The only difference in the two cases was a "small change" in rotor

geometry. Since the bending-torsion behavior of cantilever elastic blades is very

sensitive to the precone and droop, it may be concluded that the basic structural

dynamics was not adequately modeled. One benefit of such comparisons is the insight

and stimulus to correct such discrepancies by identifying the sources of error in

the program: Although such a problem had not been previously suspected, the G400

analysis was revised to correct the undiscovered problems in the analytical treat-

* ent of the blade structural deformations. The revised G4OO results included in

figure 93 were a substantial improvement over the original calculations.

Another example is regressing lead-lag mode damping of the coupled rotor-body

dynamic system of Bousman described previously. Figure ,94 shows experimental data

at a = 90 (ref. 158) compared with the predicted results of various analyses.

Again, there is a considerable scatter in the predictions, even though the general

trencs are reasonably well represented. Given that only quasi-steady aerodynamic

theory and hinged-rigid blade dynamics are included, it would be expected that the

predictions would be in much closer agreement.

:n order to determine the sources of differences between :he various predic-
tions it is necessary to compare the equations directly at some -evel or to compare

predictions for a simplified proolem in stages until the differences are accounted

for.

4. EFFECT OF AEROELASTIC STABILITY CHARACTERISTICS ON ROTORCRAFT SYSTEMS

Previous sections have addressed the development of analysis methods for aero-
elast.c stability and investigations of the different types of aeroelastic stability
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phenomena exhibited by rotor blades and coupled rotor-body systems. This section
will describe the effect of aeroelastic stability characteristics on the design of'
pecific rotorcraft systems. Insights provided by development and testing experi-

ence will also be addressed. The purpose is to identify the government research
that contributed to the development of these systems, such as helping to insure
freedom from instability, resolving unexpected occurrences of aeroelastic instabil-
ity, or supporting research on a particular class of rotor systems to owercome
inherent aeroelastic stability limitations.

HINGELESS ROTORS

During the 1960's considerable interest arose in the hingeless rotor as a
natural step in the evolution of a simpler, lighter, and more reliable helicopter
rotor. Much of the early interest was sparked by the Lockheed CL-475 and XH-51A
gyro-controlled, rigid-rotor vehicles, the MBB B0-105, and the Westland WG-13
Lynx. Hingeless rotors offer a number of advantages such as elimination of heavy,
bulky, and unreliable hinges and bearings of articulated rotors and the potential to

eliminate lead-lag dampers used to prevent ground resonance. The many possible

configurations and associated design variables complicate the subject of hingeless-
rotor aeroelastic stability, and the potential for instability makes it central to
the design of a successful system.''

AH-56A Cheyenne

i The U.S. Army Lockheed AH-56A Cheyenne was a high-speed compound helicopter
designed as an advanced aerial fire support system. The gyro-controlled stiff-

inplane hingeless rotor was derived from the highly successful Lockheed XH-51
demonstrator aircraft that was flown as both a pure and compound helicopter. The

hingeless rotor, comoined with a mechanical gyro feedback control system, provided

nigh maneuverability and low gust response. The stiff-inplane rotor precluded the

need for lag dampers to suppress ground or air resonance instability. However,

,uring flight testing the AH-56A revealed several aeroelas:ic instabilities not
encountered with the XH-51, a resuit of differences in design details of the
scaled-up AH-56A configuration. Furthermore, the hingeless rotor was a significant
decarture from conventional articulated rotor configurations, and the complex behav-
:or of stiff-inplane hingeless rotors .as not adequately uncerstood at the time. As
a result, this experience stimulated a wide range of basic research into the aero-
elastic stability of hingeless-rotor system. and -indeed mucf of AFDD research grew
out of AH-56A development experienqes. Foilcwing the concusion of the AH-56A
:rcgram. :he U.S. Army Aviation Systems Commanc and the Aeroflightdynamics Director-
ace sponsored a Lockheed effort to document the experience obtained regarding
jynamics phenomena of this aircraft. This information Is contained in repcrts by

,onnam ana Cardinale (ref. 278) and Johnston and Connor (ref. 279). Additional

sources for :his and other information are Johnston and Cook fref. 280), Anderson

'ref. 28'), and Anderson and Jchnzton (ref. 282).
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During early development of the AH-56A, two problems received ost attention.

The IP-2P phenomeno: fref. 278) occurred at low rotor speed in the presence of high
rotor hub moments at wight occur in ground contact, whore nonlinear blade-feathering

moments resultinb from combined flap and lead-lag bending were fed back into the
control gyro in such a way as to produce a coupled rotor-gyro instability. The
second problem, termed 1/2 P-Hop (refs. 279,282), involved coupling of the lead-lag
regressing mode, vehicle roll mode, collective rotor flapping, and vehicle vertical
translation near the regressing inplane frequency of about 0.5 per rev. This pheno-
menon occurred in high-speed flight and led to loss of an aircraft.

Because of the high advance ratio and proximity to a half-integer frequency,
the 1/2 P-Hop stimulated interest in the use of Floquet theory to treat periodic-
coefficient systems. To further study the problem, the AH-56A was installed in the
40- by 80-Foot Wind Tunnel at Ames for further testing under controlled conditions

(fig. 95). Early in the test, while at a moderate-speed, high-thrust condition a
rotor pitch-up divergence occurred that destroyed the test vehicle. This instabil-
ity was attributed to aerodynamic stall-feathering moments overpowering and desta-
bilizing the normal gyro feedback generated by rotor flapping. Following this
incident, the Advanced Mechanical Control System (AMCS) was developed, using direct
flap feedback from the blades instead of indirect feathering moments. This elimi-
nated the source of both the 1P-2P and moment stall instabilities. A final problem
of the reactionles mode instability was encountered during a low-speed, high-gross-
weight condition (refs. 279,281). This was essentially an isolated-blade flap-lag-
torsion instability of the type discusssed previously.

During the AH-56A Cheyenne development, government researchers worked closely
.with Lockheed engineers to attempt to understand the new phenowena being encountered

and to devise means to eliminate the problems. This program was instrumental in
revealing the complexity of stiff-inplane hingeless-rotor aeroelastic stability and
the necessity of a firm technology base on which to launch a major development
program. Government research subsequently confirmed the complexity of hingeless-
rotor aeroelastic stability characteristics and provided key information to guide
further rotor system developments.

Bell Flexhinge Rotor

The two-bladed teetering rotor has long been synonymous with Bell Helicopter
Textron but in recent years the company has developed several production hingeless-
rotor helicopters and has flight tested a prototype bearingless rotor. These acccm-
plishments were preceded by an active research and development effort, much of it in
cooperation with or sponsored by the covernment. While much of this research
addressed flying qualities, rotor :oaas. and vibration characteristics, aeroelastic
stability played a prominent role in the later stages of development. Early Bell
hingeless rotors from the first Model 47 flown in 1957 to the Model 609 flexbeam
rotor tested on the UH-I under Army sponsorship in 1972 (ref. 283) were stiff-
inplane configurations. The chief drawbacks of these 'rotors were excessive chord-
wise blade stresses in high-speed and maneuvering flight.

e (
£o



To re lve these problems, Bell evolved a soft-inplane version of the Model 609
O rotor, using elastomeric lag hinges and dampers, and demonstrated greatly reduced

chordwise bending moments in flight tests. The dampers insured air and ground
resonance stability. Bell initiated further investigations of the aeromechanical
stability of soft-inplane rotors using a small-scale research and development rotor,

the Model 652, having capabilities to vary the aeroelastic coupling parameters. In

cooperation with the U.S. Army Aerostructures Directorate and NASA Langley, the

Model 652 rotor was extensively tested for aeromechanical stability in the Transonic

Dynamics Tunnel, as reported by White and Weller (ref. 284). They investigated

effects of elastomeric damping, kinematic pitch-lag coupling, pitch-flap coupling,

flap-lag coupling, and hub stiffness. They also analytically investigated ground

resonance using combinations of rotor blade pitch-lag and flap-lag coupling that

Ormiston found effective for increasing lead-lag damping of a fixed-hub rotor

(ref. 202). However, for coupled rotor-body configurations including pylon flexi-

bility, they were unable to stabilize both the pylon and ground-resonance mode with

a single combination of couplings.

Bell completed development of a refined version of a soft-inplane hingeless

rotor, the Model 654, using elastomeric dampers to insure ground and air resonance

stability, and conducted successful flight testing of a Model 206L aircraft

(ref. 285). Bell used a similar approach to insure stability of the Flenhinge

Rotor, subject of a predesign study for candidate rotor systems for the Rotor

Systems'Research Aircraft (ref. 286).

BEARINGLESS ROTORS

The hingeless-rotor concept is based on simplifying the rotor hub by eliminat-

ing blade flap and lead-lag hinges and carefully designing the structure to permit

necessary blade-motion response without incurring excessive bending stresses. The

bearingless rotor simply extends this idea and eliminates the blade-pitch-change

bearing as well, substituting a flexbeam of sufficient torsional flexibility to

accommodate the required pitch-change motion of the blade. Elimination of the

rotor-hub bearings significantly reduces weight, complexity, and maintenance,

thereby increasing helicopter productivity and reliability. However, aeroelastic

complexity of the bearingless rotor introduces new unknowns in the development of

advanced rotorcraft.

XH-51A Matched-Stiffness Rotors

The XH-51A Matched Stiffness Rotor program was conducted by Lockheed California

Company under sponsorship of the Aviation Applied Technology Directorate to improve i
the gyro-controlled rigid-rotor design proved by the basic XH-51A aircraft. The

basic gyro control systemL- was designed to sense rotor-Clapping motion caused by

external disturbances and to feed back appropriate cyclic pitch to counter the

flapping response. The mechanical system for sensing blade-flapping moments also
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O sensed blade-pitch moments that could potentially contaminate the feedback signal.
Hence any reduction of blade-torsion moments was desirable. The nonlinear torsion
moments, which result from pombined'flap and lead-lag bending, vanish for rotor
blades with equal flap and lead-lag bending stiffnesses; therefore, the so-called
matched-stiffness blade promised to eliminate a principal source of gyro-control
contamination.and permit a reduction in the size of the gyro. When the lead-lag
stiffness was reduced to match the flap stiffness, the rotor also became soft-
.inplane, and therefore susceptible to ground and air resonance. The study of these
phenomena became the priicipal focus of the program.

While the design for a matched stiffness configuration was being formulated, it
was also decided to. incorporate another feature: replacement of the feather bear-
ings with a flexbeam, thus converting the hingeless rotor to a bearingless rotor.

No auxiliary damping was used in the design of the rotor. As reported by Cardinale
(ref. 81) and Donham et al. (ref. 287) the XH-51A Matched Stiffness Rotor system did
not exhibit a suff'-iently wide stable range of rotop speed to operite safely
throughout the fli~nt envelope. Nevertheless, the ground and air resonance bound-
aries were extensively documented for ground-contact conditions and for hover and
low-speed flight, and a number of configuration changes were evaluated and corre-
lated with theoretical analyses. The program provided valuable experience that
aided later bearingless-rotor development programs such as that of the Boeing Vertol

Bearingless Main Rotor.

Composite Bearingiess-Rotor Design Studies

0 Increasing interest in bearingless rotors, together with the development of the
Army-NASA Rotor Systems Research Aircraft (RSRA) for flight testing advanced rotor
systems, resulted in government sponsorship of several preliminary design studies of
candidate rotor systems. These studies emphasized the application of composite
materials to the bearingless-rotor concept and gave special consideration to the
requirements for adequate Levels of aeroelastic stability. These studies were
discussed by Swinalehurs: in reference 288.

One of the first studies of the beari-rless rotor for eliminating all hinges
and bearings through the use of composite materials was initiated at UTRC in 1968.
in tne Composite 3earingoss Rotor (CBR) concept, two flexbeam members crossed at
the center of the rotor form the spars of a four-bladed rotor. The early UTRC work
led to Army ana NASA support Cor analytical and design studies including composite

materials investigatlons. small-scale mcdei testing, development and corre)ation of
staoility analysis with test data, and preliminary design layouts of a full-scale
rotor. Pesults .af :his work were recortea b" 3ieiawa et al. (ref. 56). Both two-
and four-bladed stiff-inplane configurations with pinned-pinned torque tube and
cantilever torque tube pitch-control systems were wind-tunnel tested in the fixed
hud condition. The G400 orogram developed by Bielawa (ref. 55) was used for this
i:vescigation. ?r:ncipa: aeroelastic test results and correlations with analysis
involved blade-beding moment response ana stresses. The resultq also verified the
analysis, in that all experimental cases ooserved :o be stable were also predicted
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W to be stable. Experimental results did lndicate.a tendency for the cantilver torque
tube configuration to exhibit adverse pitch coupling resulting from torque-tube
flapwise motion under some operating conditions.

The full-scale Composite Bearingless Rotor design used a four-bladed 62-ft-diam
rotor sized for an S-61 class aircraft. Two torque tube configurations were
designed, a cantilever torque tube and a snubbed torque tube to eliminate the poten-
tial for adverse couplings owing to flapwise motion of the torque tube observed in
the model tests. An aeroelastic stability analysis of the full-scale snubbed torque
tube configuration was carried out using the G400 analysis for both stiff- and
soft-inplane versions of the design and showed -both configurations to be stable for
the conditions analyzed.

Another government-funded design study was undertaken by Boeing Vertol to
evaluate the feasibility of a four-bladed Composite Structures Rotor (CSR) for
installation and testing on the NASA-Army RSRA (ref. 289). The CSR design was
roughly similar to the BMR 'onfiguration, having twin flexbeams, a torque shaft
between the flexbeams, and no auxiliary elastomeric damping. Design of 53-ft-diam
and 60-ft-diam rotors were studied and air and ground resonance analyses performed
using the equivalent-hinged, rigid-blade C-45 analysis. This exercise revealed thp
difficulty of analyzing a complex elastic system, such as the bearingless rotor,
with a discrete, equivalent-hinged analysis.

Although the flexbeam designs for the 53-ft and 60-Ft rotors were the same, the
d ifferent blade lengths led to differeit locations for the equivalent flap and
lead-lag hinge, such that the C-45 flap and lead-lag hinge sequences for the two
designs were different. For the 53-ft-diam rotor, the sequence was flap-lag-pitch;
for the 60-ft-diam rotor, the sequence was lag-flap-pitch. This difference was
sufficient to cause moderately large differences in the stability of the two
rotors. For the 60-ft rotor, it was necessary to reduce the chordwise frequency to
insure aeromechanical stability.

Boeing Vertol Bearingiess Main Rotor

The Applied Technology Directorate sponsored a very successful Boeing Vertol
program to develop and flight test the Searingless Main Rotor (BMR) on the BO-105
aircraft; the purpose was to demonstrate concept feasibility with emphasis on aero-
elastic stability. The principal objectives of the project were to demonstrate that
acceptable aeroelastic stability, structural loads, and flying qualities could be
achieved with such a rotor. The rotor design concept was an outgrowth of Boeing's
YUH-61A stiff-inplane bearingless tail rotor. The f'u--bladed BMR was-designed to
replace the BO-105 hingeless rotor; the existing hub and inboard portiozs of the
blade were removed and replaced -with a bearingless hub, 0i"' " berglass flexbeams
and a torque tube cantilevered to the blade and pinned at tne (fig. 96). The I
basic dynamic properties of the BO-105 rotor were retained, wit iderate flapwisestiffness, soft-inplane chordwise stiffness, and no auxiliary lead-lag dampers. The
results of 'he design effort were reported by Harris et al. (ref. 290).
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Marginal air and ground resonance characteristics of the XH-51A Matched Stiff-
ness Rotor and a desire to avoid the use of lag dampers served to focus considerable
attention on aeroelastic stability in the early phases of the BMR program. Exten-
sive small-scale-model testing was conducted to check theoretical stability predic-
tions. Test results (refs. 254,290) confirmed a reasonably wide rotor speed range
of stable operation, generally in agreement with the predicted characteristics. The
Boeing Vertol predictions were obtained from the C-45 analysis of a simplified
spring-restrained hinged-rigid blade. With careful exercise of engineering judgment
in the selection of effective hinge configuration parameters for the bearingless
rotor, reasonably accurate predictions of stability could be made. The need for a
more rigorous approach to better support the BMR design was recognized, however, and
led to the development of the FLAIR analysis by Hodges, as described in section 2.
In an effort to determine the most effective acroelastic couplings to prevent air
and ground resonance instability, parametric studies were conducted using the C-45
and FLAIR analyses; FLAIR results are published in reference 58. Both analysis and
model test results indicated that a combination of flap-lag structural coupling from
blade negative-droop outboard of the flexbeam were most effective for aeroelastic
stability. Aeroelastic stability characteristics determined during flight testing
of the BMR on the 80-105 aircraft were reported by Dixon (ref. 90), Staley and Reed
(ref. 291), and Staley et al. (ref. 89).

Extensive ground and air resonance tests were conducted in a variety of ground
contact and flight conditions. Initial ground testing revealed lower than expected
stability, and led to minor modifications of the skid landing gear to raise the body
frequency slightly. Air resonance damping was similar to theoretical and model test
data. The BMR was slightly less stable than the baseline B0-105 hingeless rotor,
and this was attributed in part to lower inherene structural damping of the BMR
flexbeam-blade structure. Nevertheless, the BMR demonstrated a major advance in
rotor-system technology and remains the only damperless, bearingless rotor success-
fully tested throughout the vehicle flight envelope.

Following flight testing, the BMR was installed in the 40- by 80-Foot Wind
Tunnel at Ames to gather additional data on rotor stability characteristics as well
as performance, loads, and flight-control characteristics outside the BO-105 air-
craft flight envelope. The wind-tunnel testing also included modifications to vary
the pitch-link stiffness and addition of elastomeric damper strips to increase
flexbeam structural damping. The results of the wind-tunnel test, reported by
Sheffler et al. (ref. 292) and Warmbrodt and McCloud (ref. 293), indicated that the
relatively simple modification of adding elastomeric damping strips was very effec-
tive in increasing the lead-lag damping in all cases tested. Sheffler et al. sub-
sequently reported'on model testing of an advanced BMR II flat-strap configuration
that was also stabilized with the use of elastomeric damping strips (ref. 294).

Bell Advanced Bearingiess Rotor

Following the successful development of the Model 654 soft-inplane hingeless
rotor and application of'that technology to several production aircraft, Bell
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initiated a program to design and test an advanced bearingless rotor. This effort

produced the very successful Nodel 680 rotor system, which was flown on a Model 222
aircraft. As a part of that program, Bell sought to improve In-house analysis capa-

bilities for predicting the aeroelastic stability of bearingless-rotor

configurations.

In support of this work, NASA Ames sponsored a model-scale experimental program

to obtain data for determining the adequacy of these prediction methods. The small-

scale model was similar to the Model 680 configuration-a four-bladed, soft-inplane

bearingless rotor with a single eleminnt flexbeam and a torque tube with a snubber

and elastomeric damper. Blade coning, sweep, pitch-flap and pitch lag couplings,

and fuselage inertial properties could be changed to conduct parametric studies.

The model was tested in hover and forward flight for both fixd hub and coupled

rotor-body configurations. The testing and results were reported by Weller

(refs. 258,259) and by Weller and Peterson (ref. 260). In genecal the Bell analyti-

cal predictions were in good agreement with the measured test data. It was also

concluded that for this rotor configuration the effects of rotor geometric and

structural design parameters on stability were not large, and that an auxiliary

elastomeric damper was the best means of insuring acceptable mechanical stability.

Integrated Technology Rotor/Flight Research Rotor

The Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) Project was

* undertaken by the Aeroflightdynamics and Aviation Applied Technology Directorates of

the U.S. Army Aviation Research and Technology Activity, and NASA Ames, to advance

rotor-system technology by combining advances in the structures, dynamics, mate-

rials, aerodynamics, and acoustics technical disciplines to design and demonstrate,

through actual full-scale flight test, the benefits of an optimized rotor system.

Although the project was not funded as far as the full-scale flight test phase,

sufficient research and development was completed that it: significantly influenced

related and follow-on programs. The project consisted of several phases and

efforts, undertaken primarily through industry rontracts. A methodology assessment

exercise was conducted to evaluate the adequacy , C industry aeroelastic stability

prediction capabilities, as described in section 3. Concept definition studies were

undertaken by five helicopter industry contractors to examine the feasibility of

various hub concepts for further consideration during preliminary design. Many of

these hub concepts were bearingless-rotor configurations, and design features to

generate aeroelastic couplings and to enhance aeroelastic stability wore examined.

Bousman et al. presented an overview of :hese studies in reference 295. An example

of one damperless, bearingless-hub design examined by Bell Helicopter Textron is

illustrated in figure 97.

Three contracts were awarded to conduct preliminary design of ITR/FRR rotors.

A significant part of these studies included testing small-scale models to confirm

the aeroelastic stability of the candidate Jesigns. The Boeing Vertol design

reported by Mychalowycz was z single-flexbeam bearingless rotor with a torque-cube

pitch control system having an offset shear oin at the hub to introduce pitch-lag
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aeroelastic coupling (ref. 261). Hooper used the FLAIR analysis to conduct param-
etric studies of the ITR hub coupling parameters to optimize the aeroelastic stabil-
ity characteristics (ref. 91). Negative droop and an offset of the torque-tube
shear pivot to introduce pitch-lag coupling were effective in inhibiting air and
ground resonance instability. No auxiliary elastomeric damping was included. Bell
Helicopter Textron designed a refinement of the Model 680 bearingless-rotor configu-
ration and included a torque tube with snubber and elastomeric damper. The Sikorsky
design was based on the elastic gimbal rotor design originally studied by Carlson
and Miao (ref. 296).

The results of the ITR/FRR Project served to identify the technical readiness
of several advanced rotor technologies. Regarding aeroelastic stability of bearing-
less rotors, a consensus on the feasibility of a damperless configuration was not
reached. The definition-of blade and flexbeam frequencies, and the identification
of aeroelastic couplings to insure aeromechanical stability over a sufficient range
of rotor speed and vehicle operating conditions, is a difficult design task; at the
present time, most designers will opt for a lower-risk approach that incorporates
auxiliary elastomeric lead-lag damping.

Related structural issues of flexbeam strength and flexibility are better
unde;-.tood, but more progress is needed. tt is worth noting that the government-
sp.,%nored preliminary design studies prompted a parallel MDHC-funded program that
cukinated in successful flight testing of the HARP bearingless rotor on the Model

* 51X' helicopter. In addition NASA will sponsor fabrication and testing of a large-
scale version of the Boeing Vertol 1TR in the NASA Ames 40- by 80-Foot Wind Tunnel.

TILT-ROTOR AIRCRAFT

The U.S. Army Bell XV-3 Convertiplane was designed in the early 1960's. It
used a two-bladed, teetering-rotor system to partially decouple the gyroscopic rotor
moments from the pylon, and the blades were designed with conventiunal negative
pitch-flap coupling to reduce rotor flapping during low-speed maneuvers. Develop-
ment of the XV-3 aircraft identified many of the dynamic proolems of tilt-rotor
aircraft, including proprotor whirl flutter, which occurred during full-scale wind-
tunnel testing in the NASA Am.es 40- by 80-Foot Wind Tunnel.

With the conclusion of the XV-3 program and the initiation of the Advanced
Composi:e Aircraft Program leading to the :evelopment of the XV-15, considerable
work was done to better unaerstand the shortcomings of the XV-3 design and the
importance of rotor elastic motions, rotor couplings, control system flexibility,
drive train effects, and wing dynamics. Gaffey made an important contribution by
investigating the use of Dositive pitch-flap coupling for improving flap-lag stabil-
ity of stiff-inplane rotors in high inflow axial flight (ref. 297). Although the
XV-3 used negative pitch-flap coupling to minimize flapping during maneuvera in the
high-speed airplane mode, Gaffey showed that a possible coalescence of the flap and
:ead-:ag frequencies of the rotor blade could lead to -flap-lag instability. The use
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of positive pitch-:flap coupling prevents such a coalescence, thereby stabilizing
flap-lag motion; Gaffey also showed that positive coupling was equally effective in
controlling flapping motion.

XV-15 Tilt Rotor Research Aircraft

The XV-15 Tilt Rotor Research Aircraft was developed as a Joint NASA-Army
effort to demonstrate the solution of the key technical problems of this configura-
tion (fig. 98). Substantial government efforts were devoted to developing the
technology base needed to deal with aeroelastic stability issues of, the tilt
rotor. This work has been discussed in detail in sections 2 and 3. At the appro-
priate point, the government initiated a full-scale proof-of-concept aircraft pro-
gram to complete the technology ddvelopment process. Following a competitive pre..
liminary design phase, Bell was selected to design and manufacture two. XV-15 air-
craft. Extensive government participation in this program contributed to its ulti-
mate success. The following will describe some of the aeroelastic stability consid-
erations relevant to the program.

The XV-15 proprotor design was the result of 15 years of technology develop-
ment. The three-bladed proprotors use a gimbaled hub to minimize gyroscopic cou-
pling between the rotor and the pylon. The blades are stiff inplane to avoid airO and ground resonance, and are similar to hingeless helicopter rotor blades in many
respects. Positive pitch-flap coupling of the blades was used to stabilize flap-lag
motion and to minimize rotor flapping during maneuvers, based on Gaffey's findings
described above. The blade flap frequency was chosen, in part, to minimize pylon
stiffness requirements for proprotor whirl-flutter stability. Gaffey et al.
(ref. 298) and Johnson (refs. 270,272,299) summarize much of the dynamics-related
technology development during aircraft design.

The results of the dynamics testing of the XV-15 aircraft are reported by Marr
et al. (ref. 300) and by Bilger et al. (ref. 301). The aeroelastic stability of the
aircraft has been cleared to speeds up to 300 knots at altitude. At very high
speeds (and at high altitude with the reduction in the speed of sound), lift diver-
gence over a signiffcant portion of the rotor is stabilizing for proprotor
dynamics. XV-15 whirl-flutter stability was not a problem.

The successful development of the XV 15 aircraft was the culmination of efforts
to demonstrate the ability to effecti:ely control potential aeroelastic instability
.nac nindered acceptance of the revolutionary tilt rotor concept. The NASA and Army
contributions in research and the development of the basic technology, as well as
management of the XV-15 aircraft program, were major accomplishments.

V-22 Osprey Aircraft

7he V-22 Osprey tilt rotor oeing jeveloped by the U.S. Marine Corps is tangible
proof of the Potential brought to fruition with the XV-3 and XV-15 research air-

S2ra:t'. The development of the * 22 is zenefi:ing from significant support fr-om NASA
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and Army researchers and r'tper~mental facilities. Activities in the area of aevj-
elastic stability will be discussed oelow.

A detailed summary of the dynamic stability analysis and testing of the pro-

posed V-22 tilting proprotor system is presented by Popelka et al. (ref. 302). An

initial rotor design by the.Bell-BoeinG team used XV-15 technology with a three-

bladed, stiff-inplane, gimballed hub rotor system. However, after initial testing

in the Langley Transonics Dynamics Tunnel, aeroelastic stability characteristics

were found to be poor. Because of the improved rotor blade airfoils with a higher

lift-curve slope, rotor aerodynamics effects reduced the proprotor whirl-flutter

stability boundary. Since the rotor precone angle was chosen for.hover, destabiliz-

ing negative pitch-lag coupling was generated in the airplane mode. T6 reduce this

coupling, lower the effective pitch flap coupling angle, and reduce the resultant

aerodynamic moment transmitted to the rotor hub as well, a coning hinge was added to
each blade. The result of this design modification was to markedly improve the

whirl-fluttcr stability well beyond the operational envelope of theV-22 aircraft.

This gimballid-coning hub required the modification of the Bell Helicopter dynamics

-prediction code and the codes of Kvaternik (ref. 99) and Johnson (ref. 94). This
new hub configuration was also used in predicting the dynamic performance of a high-
speed tilt-rotor design (ref. 303) using the modified analysis of reference 94.

Although a great deal has been learned about tilting proprotor dynamics, future
designs will likely use more advanced hub configurations (benefiting from the use of

composite materials and redundant load path designs) requiring nPw analyses. Higher

airspeeds will require better understanding of the influence of compressible aerody-

namics on proprotor stability. True optimization of the design process for rotor-

pylon-wing aeroelastic stability has yet to be attempted. Also, the use of active
controls has yet to be fully investigated for the potential of improving tilting
proprotor stability characteristics.

OTHER ROTOR SYSTEMS

In addition to the rotor system3 described in the previous sections, government

research and development efforts have also addressed the aeroelastic stability oc a

number of other rctor configurations. These will be briefly described below.

The search for high-soeed aircraft having vertical takeo., and landing capabil-

ity has led to consideration of a number of configuration concepts. The compound

heLicopter has received much attention, and slowing, stopping, or stowing the rotor

has been studied as a way of minimizing or eliminating :he aerodynamic problems of

operating rotors at high forward speeds. All Of these concepts involve high advance

ratio conditions. Watts et al. report results of 40- by 80-Foot Wind Tunnel tests

of a Loukheed gyro-stabilized slowed-4topped hingeless rotGr (ref. 704). Aeroelas-

tic analysis and umpavisons with test data were undertaken to determine the ability

to predict cojpied rotcr.,,yro stability under e:xtreme opetating -onditijns of low
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rotor speed and very high advance ratios. Results showed that relatively simple
aerodynamic theory was reasonably accurate for these conditions.

In the course of development of advanced bearingless-rotor systems, valuable
experience has been gained from earlier development of bearingless helicopter tail
rotors constructed from composite materials. The goverment has supported research
and development on several such systems where aeroelastic stability required careful
consideations in design. Maloney described the elastic pitch beam rotor developed
by Kaman, a two-bladed teetering rotor using a fiberglass flebea for blade-pitch
change motion, ccning deflections, and chordwise bending (ref. 305). The rotor was
designed for application to full-scale aircraft and was tested and demonstrated to
have acceptable stab;'.ity characteristics.

Boeing Vertol also gained bearingless rotor experience with a tail rotor appli-
cation. In the course of development of the YUH-61A UTTAS aircraft prototype, a
mechanically simple but structurally advanced four-bladed stiff-inplane fiberglass
tail-rotor was introduced. This rotor used a cantilever torque tube configuration
that permitted significant aeroelastic coupling of bending and torsion motions.
During development testing a number of instabiiities were encountered including
stall flutter and high-amplitude lead-,lag limit cycle motions. A stable configura-
tion evolved through extensive trial and error testing and modifications. Because
of the complex behavior of the bearingless rotor, analyti.-l methods were of limited
use in predicting or identifying solutions to observed instabilities. The extensive
aeroelastic stability data obtained in this program wete sufficiently valuable,
however, that i.t was documented (under government sponsorship) by Edwards and Miao
(ref. 306).

The Sikorsky ABC compound helicopter was developed under spunsorship of tte
U.S. Army. The two three-bladed coaxial. high-flap stiffness rotors form a unique
stiff-inplane hingeless-rotor system. To confirm the general adequacy of the
design, including aeroelastic stability, the flight rotors were tested in the
O- by 80-Foot Wind Tunnel (ref. 307): flight-test results were reported in refer-

ence 308. Without auxiliary dampers, :he lead-lag damping of the blades was very

low, but adequate stability was maintained throughout the flignt envelope.

The constans-lift rotor (CLR) and .ree-tip rotor (FTR) designs use airfoil
sections that are free to pivot on :he spar of the rotor blade in order to maintain
nearly uniform lift during forward flight and thereby minimize the 7ibratory
response of helicopter rotor biaces .n forward flight. However. the additional
degrees of freedom provide more opportunities for aeroelastic stability, and inves-
tigations of the flap-lag-torsion staoility of these design were carried out by
Chopra for the hover flight condition (refs. 309,310). With suitable selection of
aeroelastic design parameters, it was possible to identify stable configurations.
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5. CONCLUSION

The material presented herein shows the extensive involvement of the Army and

NASA in rotorcraft aeroelastic stability research. In most'of the areas addressed.

significant technology advances have occurred as a result of this research. Some of

these areas were essentially nonexistent 20 years ,go. As a result; the technicol
community is in a much stronger position to deal with the risks of aercelastic
instability of new rotor systems. In this section, the key contributions of Army-
NASA research will be sumarized, followed by recommendations for future efforts.

SUMMARY OF ARMY-NASA RESEARCH. CONTRIBUTIONS

1. A substantial capaoiity for predicting helicopter and tilt-rotor aerc.elas-
tic stability now exists, capable of treating rotorcraft strttctural dynamics rind
aerodynamics in considerable detail. Hover f'light conditions are relatively
straightforward, and very substantial progress has been made in forward flight
prediction capabilities. In addition to conventional articulated-rotor systems.
hingeless-rotor stability analysis is ncw near.i, routine, ana bearnrless r'?tors zan
be satisfactorily treated in many respec:s. ?recic:ion capaoility resides :n a
number of different analyses. many of which have been extensively validatea with
experimental data.

2. A comprehensive understanding of the aeroelastic stability characteristics
of hingeless rotorcraft now exists. This incluces nonlinear bending-torsion cou-
pling, structural flap-lag coupling, the inf.ence of kinema:i aercelastic ,ou-
pling, the effects of aerodynamics and rotor bocy coupi ing on aeromechanical staoi-
ity. and -he effects of aynanic inflow ana ':r m:c s3al! on aeroelas:ic staoility.
The differe ices between soft- and stiff-n...ar.e n:ngeiess rotors have been i enzi-
f.d. and this has ,cntrz.uz: :o shift empnas:s away from szi.f-inpcae an:: :owar:
soft-%-nolane configurations :'or new roccrcraf't.

3. :he technology base :':r :iit-ro::r Se:e.as::c staoiilty "as expanae:
suostantially. Vailidacec trea:,,cn =Caes now ex:st :o treat fully oupe ss.
including rotor, pylon, wing. and :fusela-e Jyram~cs. F-rameric sL:uies iave -on-
tributed to a good general .ncersandinz :" : .-,:r svstems znc:_z:rg "h.e :.
%) rotor-olade =nro;are,. "::n. a.d :ors::n i ar:-e traL. CCL3_*:n efects.
and compressible airfoil lercc'!namics.

4. An extensive experimenta: data :ase has :een zenerated. for smail.lsoa~e
godels and full-scale aircraft, for notrh necooer ,: :Uit-rotor ,cn'ra::ons.
The data are of hign cua.::i. -ucn of :no:- :aza:rec from excerinents stec...
designed :o acquire "aca for eorreiaton i-, :reciction methods.

5. A soii' :heere:::a. :.as.s :fr :he :'::r. yn-namics o" ncr.:near :eans
nas oeen eszablishec. -he 1 - li as : e 'S: 2.:amedV u'erous -m.' 'ers.

anc :he :heorv nas -ee- 73 7 "1era-e '



A
valid for small strain, has been extended from moderate rotation to large rotation
deforwtions. Advanced nonlinear finite-element methods are being developed and
characteristics of composite materials can now be treated for some simple Cases.

6. Dynamic inflow theory is a substantial development that has found wide
Wceptance by rotorcraft aeroelasticians. It nas been placed on a 'rigorous theo-
retical foundation and has been extensively validated with experimental data.
Because of its accuracy, simplicity, and computational efficiency, it has been found
useful in other disciplines such as rotorcraft flight dynamics. It is also amenable
to refinement for application to higher..frequency aeroelastic phenomena.

7. Mathematical methods for solving rotorcraft aeroelastic stability equations
have also advanced significantly. Floquet theory for periodic coefficient linear
systems is now in common use and the rotating-to-fixed sy~cem transformation has -
been formalized as multiblade coordinates. Recent work has also demonstrated sig-
nificant potentia: for the use of symbolic processors Cor automatic generation of
the complex multi-degree-of-freedom rotorcraft equations of motion.

8. In addition to generic rotorcraft aeroelastic stability research, invalu-
able knowledge and progress have resulted from full-scale systems design, testing,
and development of advanced rotorcraft and rotorcraft components. These efforts are
the final proof of the contributions of aeroelastic stability research develop-
ment. Full-scale development and flight test of aircraft such as the Bell XV-15 and
the Boeing Vertol BMR have been particularly effective in demonstratingmastery of
aeroelastic stability technology for critical dynamic phenomena.

RECOMMENDATIONS

.Although the last 20 years have witnessed great progress in the technology of
rotorcraft aeroelastic stability, not all, f the problems have been solved. A great
many pressing needs and attractive opportunities remain, and these should be vigor-
ously pursued. As new rotorcraft systems evolve, continual emphasis will be
required to address these new problems. The following general recommendations are
offered for consideration.

1. It is usually taken for granted that aeroelasticians can apply'Newton's
second law without error and when the resuis :f analysis are unsatisfactory the
aerodynamic theory is often faulted. There is evidence that structural dynamics
analysis is not ye: adequately underszonc and :nat preciction of ro:atinz-:eaur
tvnanics is not yet solved. More exper:mental :a a are needed. The most oolex of
.l rotorcraft structures are rocor-huos. olades. and bladeto-nuo a:*acrnents: :hey
:eserve more attention nder the influence of pure inertial loading.

2. 'ibra:ion :es::ng of roating tiaaes :n vacuum should continue and ze
expanded to include more structurally comDoex Iade and hub configurations. inciuc-
.z nonuniform properties. typical bearingless :onf'igurations. and blade structures
-.moosed of compos:te ma:erials. Careful exper:=ents. correlated wi:n ana:vs:s, =ay
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reveal analysis deficiencies in solid mechanics, material properties, and structural

damping effects.

* 3. The structural mechanios basis is now available for a large-rotation small-
ain beam theory. Such development should be continued, and a modeling approach

should be included for anisotropic materials' This will provide a capability to

analyze fully the most complex structural rotor-blade flexbeam configurations now

envisioned.

4. 'As the primary structural material for rotor blades, fiber-reinforced

composites deserve the full attention of the aeroelastician. Capability of modeling
and analyzing composite materials for rotorcraft applications needs to be substan-
tially improved.

5. Finite-element methods are necessary for effective aeroelastic analysis of
future rotorcraft. These methods need to be made more effective for-dealing with

rotating blades and for coupling rotating and nonrotating structures.

6. Computational efficiency of rotorcraft aeroelastic analysis needs to be

improved. As the number of degrees of freedom increases, the solutions for nonlin-

ear systems ifi forward flight have oecomc :ore difficult. The trim and dynamic
equilibrium solutions need to be Improved and made more .robust. Without practical
solution methods, the benefits of improvements in structural and aerodynamic theory
may not be realized.

7. Many of the analytical prediction methods developed have emphasized narrow
research investigations. Prediction capability for a broad range of applications is

needed. Prediction capability of research codes should be incorporated into compre-

hensive analyses (e.g., 2GCHAS) to make the technology -ore readily availaoie to the
*gner.

8. More attention should be devoted to linear, three-dimensional unsteady

aerodynamics theory for rotor-blade flutter analysis. In the age of computational

fluid dynamics, numerically efficient methods are needed for rapid flutter analysis
of rotor blades when stall and shocks are not present. New blade- and tip-shape
configurations will depart from the traditional design practice of chordwise coinci-

dent elastic, aerodynamic. and mass centers, and thus will require more attention to

deal with classical flutter.

9. At the same time. the most advanced unsteady aerodynamic research capabili-
ties, focused on formuiatzons :'or aeroelastic stability, should oe directed at
nonlinear problems of transonic flow and airfoil stall. :n addition. a tester
understanding of the role of tynaztc stall on rotor-olade flu:ter In forward flight

:s needed.

*0. An excelent exDer:nena: zata :ase nas been oc:ainec -or jma.-scale.
:ow-t.4-speed hingeless and nearrigiess rotors and rotor-oody systems. This data
oase should be expanded to :nclude reoresentative full-scale tip speeas and higher
-evnolds numbers. Structural confizurations srould include examples of -oth simple

30i
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and complex blades. Ephasis should bi0'i fora'd flight, but these models need to
be fully tested in hover as well. Isolated rotors are best; the effects of rotor-i
body coupling are much more tractable analytically.

11. Rotor-blade flutter experiments should be conducted for configurations
having significant chordwise offsets of aerodynamic, mass, and elastic centers to
test new unsteady aerodynamic theories and gain experience with ,more advanced blade
design concepts.

12. Full-scale rotor testing should be maintained to provide periodic exposure

to the real world environment of aeroelastic stability.

13. Directed analysis assessment correlation exercises should be continued..

These provide unique opportunities to address and correct unwarranted assumptions,
derivation errors, coding errors, and other anomalies of individual analysis
mechods. To achieve maximum return, the causes of discrepant results need to be
traced back to their source.

14. The tilt rotor is a key vehicle of the future. The technology base has

grown enormously in the past 15 years, and it must continue to advance. Analyses
tailored to the unique structural and aerodynamic features of the tilt rotor need to
be pursued. Modeling compressible aerodynamics needs to be better understood and
potential applications of active controls to improve stability characteristicsshould be pursued.

15. Research on the fundamental aeroelastic stability characteristics of
bearingless rotors should continue. Notwithstanding the extensive, results obtained
to date, a sure formula for a damperless bearingless rotor has eludea the technical
ommunity. Research should continue in order to find a soluticn for this problem.

j
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TABLE I.- TECHNOOGY BACKGROUND FOR ROTORCRAFT AEROEL IC
STABILITY: PRE-1970 PERIOD COMPARED WITH POST-1970

PRE 1970 POST 1970

APPLICATIONS ARTICULATED/ HINGELESSIBFARINGLESS

TEETERING TILT ROTOR

TECHIOLOGY MODERATE SPEED

BLADE STABILITY BENPANG-TORSION BENDING-TORrION FLUTTER
FLU7TER WAKE FLUTTER

FLAP-LAG TORSION
WAKE FLUTTER FLOQUET THEORY

BEAM EQUATIONS LINEAR NONLINEAR MULTIPLE LOAD
ISOTROPIC MATERIALS PATH STRUCTURES

COMPOSITE MATERIALS

UNSTEADY 2-D AERODYNAMICS 2-D/3-D AERO
AERODYNAMICS THEODORSEN/LOEWY THEOL)ORSEN/LOEWY

DYNA111H.!' INFLOW
DYNAMIC STALL
TRANSONIC AERO

GROUND RESONANCE CLASSICAL GROUND COMPLEXIAEROMECHANICAL
AIR RESONANCE RESONANCE GROUND RESONANCE

AIR RESONANCE
HOVER. FORWARD FLIGHT
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KL

Figure 1.- Nonlinear torsion of an elastic cantilever beam resultng from siMulta-
neous fiapuise and chorduise bending.

0 = LOAD ANGLE

CANTILEVER BEAM

Figure 2.- Experimental arrangement for inducing nonlinear torsion by subjecting an
elastic cantilever beam to combined flatwise and edgewise bending by varying load
angle of tip-mass gravity force.
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Figure 9.- The effect of axial strain on torsional stiffness for a beam of circular
cross- section.
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Figure 10.- Principal configurations for bearingless rotor blade pitch-control
systems.
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Figure 12.- Lockheed 7.5-ft-diam hingeless rotor model installed in Aeroflight-
dynamics Directorate 7- by 10-ft wind tunnel.
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Figure 13.- Effect of dynamic inflow on static hub moment response derivatives Of a

hingelea3 rotor in hover at 40 collective pitch.
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Figure 14.- &~fect of dynamic inflow on static hub moment response derivatives of a
hingeles3. rotor in forward flight at 00 collective pitch.
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Figure 15.- Effect of mean inflow and advance ratio (contained within static inflow
iw.-del) on a typical rotor hub mment response derivative.

0 DATA
THEORY

-- DYNAMIC INFLOW
-NO INFLOW

1.00

.80

.6

.4 0

.2 PROG* REGR.PO.
PRO. 16REGR.

0 .4 .8 1.2 1.6 2.0 0 .4 .8 1.2 1.6 2.0
FREQUENCY. w. rev-1 rREQUENCY. w~. uv-1

Figure 16.- Effect of dynamic inflow on frequency respori.e of blade flapping to
blade pitch excitation of a hovering rotor at 20 coilective pitch.
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Figure 17.- Effect of momentum theory dynamic inflow on rotor-hub moment frequency
response to cyclic pitch excitation for a hingeless rotor .moael in .over at 40
collective pitch.
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Figure 18.- Effect of empirical dynamic inflow model on ror~r-huo ont 'requercy
response to collctive and cyclic pitch excitation for a mingeiess - -c e r n
forward flight at 0.51 advance ,ratio and 00 collective oitcn.
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Figure 20.- Correlation of Pitt-Peters dynamic inflow theory with experimental data
for rotor frequency response for a hingeless rotor in forward flight at 0.51
advance ratio at 00 collective pitch.
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Figure 21.- Effects of dynamic inflow on the coupled roto:.-body frequencies of a
helicopter model in hover at 00 collective pitch. (a) Without dynamic inflow.
(b) With dynamic inflow.
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Figure 22.- Flowchart for derivation and solution of aeroelastic stability
equations with an automatic symbolic manipulation program.
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Figure 23.- Comparison of aeroelastic stability results obtained with conventional
and computer-generated equations.
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Figure 29.- Effect of pitch-lag wupling on flap-lag stability boundar-'es in hover
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f AGFLAPA HINGE

1.4

Lu1.0 1.1. .

FLusN LAG-FLAC P HIG

1.

'28



- ~~ - AV-.. -

REGION OF UNSTABLE
LIMIT CYCLE

1.4-

1.3

1.2

c: 0-02REGION OF STABLE
-A 1.1 LIMIT CYCLE3

1.0 0-0.25

0 -0.30 red

.9

.8
.9 1.0 1.1 1.2 1.3 1.4 1.5

p

Figure 31.- Nonlinear flap-1aw stability f'or hinged-rigid blade in hover: y
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Figure 32.- Comparison of flap-lag instability for offset-hinged-rigid blade with
elastic blade in hover: a 0.2 rad, y =10, a 0.05.

-FEM

S MODAL
.6 1st LAG MODE

.4R0.

.2 -2nd LAG MODE USAL
R 0.0 R 0.4 R 0.6

STABLE

.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 33.- Comparison of flap-lag stability boundaries of elastic blade in hover
calculated with modal and finite-element methods: =1.15, Y 5, a 0.1.
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Figure 34.- Effects of unsteady aerodynamics on flap-lag stability of a hinged-rigid
rotor blade in hover: p 01.1, =o 0.1 rad, y = 8, o = 0.05, R = 0, b 1.
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Figure 35.- Effects of finite-state model of Greenberg unsteady aerodynamic theory
on flap-lag stability of hinged-rigid blade in hover: e = 0.25 rad, 5,
o 0.05, R = 0, b = 4.
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Figure 36.- Effects of reverse flow on lead-lag..damping of elastic blade flap-lag
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R =0.
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Figure 40.- Con par ison of approximate constant coefficient muiblade equations with
exact Floquet theory result for lead-lag damping of hinged-rigid blade flap-lag
analysis in forward flight: p =1.15, €:1.4, CT/o 0.2, r 0, T=5, R =0.
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Figure 41 .- Effects of dynamic inflow on lea d-lag dam;,iag in forward flight for
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Figure 43.- Finite element calculation of lead-lag damping in fc.vward flight for
elastic blade flap-lag analysis: p = 1.125, wr 0.732, CW 0.005, y 5.5,
o 0.07, R = 0.6.
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b Figure 4I5.- Two-bladed 5. 5-ft-diam flap-lag model rotor for hover experiments.
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Figure 46.- Hub flexures to simulate spring restrained hinges for rigid blade flap-

ra mode rotor.
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Figure 51.- Stability boundaries for rotor-blade elastic flap-lag bending and
rigid-body root pitch in hover: ; F1 1.2, y 8, 0.08.
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Bpc z 0.05 rad.
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Figure 55.- Effects of chordwise aerodynamic center offsets on elastic blade flap-
lag-torsion stability boundaries in hover: F1 = 1.14, f =L5, ' = 8, = 0.05.
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Figure 66.- Lead-lag mode damping for elastic blade flap-lag-torsion analysis in
forward flight for two trim conditions.: F 1.125, 'ri 3.176, y 5.5,
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Figure 67.- Effects of dynamic inflow and flap-lag structural coupling on lead-
lag regressing mode damping for elastic blade flap-lag-torsion analysis in
rorward flight: w 1.15, y = 5, a = 0.1. (a) Soft inpline" w 0.7.
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Figure 69.- Hingeless rotor ground-resonance stability boundaries with hinged-rigid
blade flap, lead-lag, and body pitch degrees of freedom: p 1.1, y 5,
a 0.05, R 0.
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Figure 70.- Hingeless-rotor air-resonance stability boundaries with hinged-rigid
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hingeless-rotor air resonance in hover as a function of rotor speed: po = 1.1,
C = 0.7, y 5, a = 0.05.
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Figure 72.- Effect of dynamic inflow on hingeless-rotor air resonance for a
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Figure 73.- Coupled rotor-body lead-lag regressing mode damping in forward flight
for various trim nconditions: p = 1.15, = 0.7, C1/o = 0.2.
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Figure 74.- Small-scale rotor model for coupled rotor-body stability experimenc3
with non-airfoil blades to simulate in vacuum conditions.
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Figure 76.- Small-scale rotor model for coupled rotor-body hover stability experi-
mnents with 5.5-ft-diam three-bladed rotor.
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Figure 78.- Comparison of experimental and theoretical roll-mode damping for
coupled rotor-body model in hover including effects of dynamic inflow.
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Figure 79.- Comparison of experimental and theoretical regressing lead--,ag mode
damping for coupled rotor-body model in hover. (a) Johnson's results including
dynamic inflow. (b) Bousman's result without dynamic inflow.
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* 2
g 0 WIND TUNNEL DATA

O - PREDICTIONS
2

S.16

w.12
0 -C-9o

04

wA 0 20 40 60 80 100 120 140 160 190
cc TUNNEL AIRSPEED. knot
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Figure 86.- Small-scale rotor, pylon, .g tilt-rotor research model installed in
Langley Transonic Dynamics Tunnel.

167



ORIGINAL PAGE

:1 BLACK AND WHITE PHOTOGRAPH

I%

Figure 87.- Full-scale semispan zotor-pyio'-wing modpl in~stalled in Ame3 40-
by 80-Foot Wind Tunnel.
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Figure 89.- Eff'ects of' rotor-blade pitch and lag motion on tilt-rotor wing bending
node damping in cruise flight.
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Figure 90.- Effects of rotor drive system dynamics and rotor-shaft interconnect on
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Figure 95.- Lockheed AH-56A Cheyenne installed in 40- by 80-Foot Wind Tunnel.

CLEVIS

UPPER HUB

13LAD

-TWIN 'C-SECTION4" FLEXBEAM

LOWER HUB FEIL

TOlOUE TUBE

P .ITCH oiORN

PITCH LINK

Ficnure 96.- 3oeing 7ertol bearingless main rotor~ (BMR).
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